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We propose a factor correlated unobserved components (FCUC) model to analyze
the sticky and flexible components of U.S. inflation. The proposed FCUC
framework estimates trend inflation and component cycles in a flexible stochastic
environment with time-varying volatility, factor loadings, and cross-frequency
(trend-cycle) correlations, thus capturing how structural heterogeneity in price
adjustment shapes the evolution of aggregate trend inflation over time. Using
Bayesian estimation methods, we show that the FCUC model substantially reduces
the uncertainty surrounding estimates of trend inflation and improves both point
and density forecast accuracy. Our findings reveal that, particularly following the
Global Financial Crisis and more markedly since the COVID-19 recession,
transitory price shocks originating from flexible inflation have become a major
driver of trend inflation, whereas sticky inflation explains only part of the variation.
These results indicate that temporary price movements can have persistent effects,
highlighting important policy implications regarding the cyclical dynamics of
disaggregated inflation components amid evolving macroeconomic conditions.
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1 Introduction

The recent surge in U.S. inflation following the COVID-19 pandemic reflects a mix of persistent

and transitory shocks, which are exacerbated by heightened macroeconomic uncertainty and

potential changes in long-run inflation expectations. Although some Fed’s communications

and briefs (Daly, 2022; Jordá et al., 2022; Lansing, 2022) argue that persistent shocks have

increasingly affected inflation since 2021, the uncertainty associated with the strength of the

post COVID-19 economic recovery and various global supply disruptions (e.g., the ongoing

global energy crisis and the Russo-Ukrainian War) complicates economic policies that rely upon

the estimation and measurement of trend inflation because these phenomena imply that volatile

transitory shocks can effect the long-run dynamics of both inflation and inflation expectations.

In this regard, separating permanent and transitory movements in inflation remains a core

task for monetary authorities, especially since major disruptions such as the Global Financial

Crisis (GFC) and the pandemic tend to substantially increase economic uncertainty (Bernanke

and Blanchard, 2024). The unobserved components model with stochastic volatility (UCSV

model) of Stock and Watson (2007) represents a notable framework that distinguishes between

permanent and transitory fluctuations of inflation dynamics since these shocks directly connect

with the concepts of trend inflation and inflation cycle, respectively. Although periods of

heightened uncertainty introduce complex shocks dynamics that weaken the identification of

inflation signals and complicate policy calibration (Lenza and Primiceri, 2022; Comerford,

2024; Dao et al., 2024), the UCSV framework addresses this complication by allowing for

stochastic (or time-varying) permanent and transitory volatilities and enabling a data-driven

variance decomposition of trend inflation. This feature has made UCSV models a dominant

tool for inflation forecasting and has led to numerous extensions—see, e.g., Chan (2017), Chan

et al. (2018), Hwu and Kim (2019), Li and Koopman (2021) and Eo et al. (2023).

Nevertheless, aggregate inflation can offer limited policy guidance during periods of

economic uncertainty, as it obscures category-specific price movements that can reveal

important insights about the transmission of permanent and transitory shocks in the economy

(see, e.g., the discussions provided by Imbs et al., 2011, Foerster et al., 2022 and Rubbo, 2024).

This observation has spawned contributions that aim to improve the estimates of trend

inflation by using disaggregated prices. For example, Stock and Watson (2016) introduced a

factor UCSV model using seventeen personal consumption expenditure (PCE) inflation
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components, while Eo et al. (2023) showed that a simpler bivariate UCSV model for

manufacturing and service inflation tends to outperform the factor UCSV model—mainly

because of reduced model uncertainty, and Chan et al. (2018) further improved the estimation

of trend inflation by anchoring a UCSV model to survey-based long-run inflation expectations.

Following these developments, we propose a flexible factor correlated unobserved components

(FCUC) model to capture key features of the U.S. headline consumer price index (CPI) inflation.

Specifically, we focus on the simultaneous trend-cycle decomposition of its sticky (infrequently

changing) and flexible (frequently changing) components, an important structural distinction

emphasized by Bils and Klenow (2004), Bryan and Meyer (2010), and recently by Stock and

Watson (2020). Since sticky prices tend to incorporate more forward-looking information and

flexible prices tend to be more sensitive to contemporaneous economic conditions and slack (e.g.,

the unemployment and output gaps), modeling their joint trend-cycle dynamics can track the

relevant changes in aggregate inflation persistence more accurately. Hence, our FCUC framework

exploits this structural heterogeneity to better identify the sources of inflation variation with

policy-relevant inference.1

We make three contributions. Firstly, recognizing that the trend inflation and the inflation

cycle capture low- and high-frequency price dynamics, respectively, our main innovation is to

allow for time-varying cross-frequency correlations, that is, time-varying correlations between

trends and cycles of the disaggregated inflation time series. This contrasts with Stock and

Watson (2016) and Eo et al. (2023), who modeled only within-frequency correlation, that is,

correlation within trends or cycles, either via a factor structure or a non-diagonal innovation

covariance matrix. While cross-frequency correlation is a well established feature of the literature

on output dynamics, linked to mechanisms such as the time-to-build effect (Morley et al., 2003;

Grant and Chan, 2017; Li and Mendieta-Muñoz, 2022) and output hysteresis (Li and Mendieta-

Muñoz, 2024; Furlanetto et al., 2025), it has been rarely applied to the modeling of inflation

dynamics in the context of UCSV models, with the exception of Hwu and Kim (2019). This

omission likely stems from the reduced-form representation of aggregate inflation that limits

1For example, when inflation is primarily driven by flexible components, such as motor fuel or utility prices,
inflationary pressures are more likely to be transitory, implying limited need for immediate policy intervention.
Indeed, Lansing (2022) calls such components “benign” shocks, as their effects tend to dissipate quickly. By
contrast, when sticky components, such as rental housing or education, contribute to inflation, the risk of
a permanent rise in inflation increases, which warrants a stronger policy response to prevent an entrenched
trend inflation and the potential de-anchoring of long-run inflation expectations.
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the identification of such correlations (Trenkler and Weber, 2016; Li and Mendieta-Muñoz,

2022). In this sense, by considering the joint estimation of sticky and flexible inflation, our

FCUC model: (i) contains sufficient moment conditions for point identification; (ii) provides

an analytic framework that quantifies trend-cycle interactions in inflation components; and (iii)

advances the understanding of how short-run shocks in the sticky and flexible inflation cycles

may influence long-run inflation dynamics in the trend inflation.

Secondly, the FCUC model jointly estimates trends and cycles of sticky and flexible inflation

with relevant time-varying dynamics, namely, stochastic loadings and volatility.

Complementing existing multivariate UCSV and factor models, such as Stock and Watson

(2016) and Hasenzagl et al. (2022), our framework captures the co-movements and differential

dynamics of disaggregated inflation components while maintaining scalability. This allows for

an improved model-consistent measure of aggregate trend inflation that follows closely the

structural heterogeneity of price stickiness. The inclusion of stochastic loadings and volatility

in both trends and cycles further allows for a variance decomposition of the contributions of

flexible and sticky cycles to trend inflation that considers both volatility and correlation

effects, thus offering a refined perspective on cyclically sensitive inflation beyond that of Bryan

and Meyer (2010) and Stock and Watson (2020).

Thirdly, it is not uncommon that cross-frequency correlations tend to be overestimated in

unobserved components models, leading to excess trend volatility due to a small-sample bias

(Trenkler and Weber, 2016; Grant and Chan, 2017; Li and Mendieta-Muñoz, 2024). To mitigate

the latter, we augment the FCUC model with the long-run inflation expectation time series

developed by the Federal Reserve Bank of Cleveland (2022). Similar to Hasenzagl et al. (2022),

inflation expectations are treated endogenously in a time-varying fashion to control for the

persistence and volatility of trend inflation. Furthermore, the long-run inflation expectation

time series is a market-based measure obtained from the term structure model of Haubrich

et al. (2012) and estimated in a data-rich environment. This measure of inflation expectations

is derived under a set of no-arbitrage conditions and anchors trend inflation by integrating

information of Treasury Inflation-Protected Securities yields, inflation swaps and swaptions,

inflation-indexed bonds, Blue Chip CPI forecasts, and surveys of consumers and professional

forecasters. Therefore, it is a risk adjusted measure that is robust to liquidity and behavioral
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biases that are known to affect survey-based expectations (Chan et al., 2018; Hasenzagl et al.,

2022).

We find two main empirical results. First, after the GFC and especially since the COVID-

19 recession, transitory shocks associated with flexible inflation have played an increasingly

dominant role in driving trend inflation, with their contribution rising from approximately 20%

to nearly 90%. This shift is caused by a strong increase in the cross-frequency correlation

between the flexible inflation cycle and trend inflation, which indicates that temporary price

changes can have persistent inflationary effects and that such effects have increased importantly

in recent times. By contrast, the influence of the sticky inflation’s cycle has declined steadily since

the Great Moderation, which is consistent with the view of better-anchored long-run inflation

expectations and a decreased effect of supply-driven shocks on trend inflation.

These findings suggest that flexible inflation, although typically viewed as transitory and

sensitive to economic slack (Stock and Watson, 2020; Ball et al., 2022; Dao et al., 2024), can

have long-run spillovers (Lansing, 2022; Bernanke and Blanchard, 2024), which contrasts with

the purely price-taking behavior of the flexible sector as modeled by Aoki (2001) and Nakamura

and Steinsson (2010) and, thus, warrants closer attention of monetary policy decisions (Alvarez

and Lippi, 2020; Carvalho et al., 2024). On the other hand, the sticky inflation cycle has

increasingly reflected transitory volatility with limited persistence on trend inflation dynamics,

which supports the view that supply shocks require a more muted policy response (Hofmann

et al., 2024; Shapiro, 2024).

Second, long-run inflation expectations do not represent unbiased estimates of sticky trend

inflation and, therefore, the two should not be equated. Indeed, our results show that the

relationship between the sticky’s inflation trend and long-run inflation expectations is

characterized by significant time variation. However, the information contained in long-run

inflation expectations helps to reduce the estimation uncertainty of the FCUC model, correct

the scale of cross-frequency correlations, and enhance the forecast accuracy of inflation models.

The remainder of the paper is structured as follows. Section 2 presents the FCUC model and

outlines the Bayesian estimation procedure. Section 3 highlights how the model captures key

dynamic features of the U.S. inflation vis-à-vis other existing approaches. Section 4 reports the

empirical results and evaluates the out-of-sample forecasting performance of the model relative
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to other relevant frameworks. Finally, section 5 concludes the article.

2 Model and estimation

This section is composed of three parts. First, we summarize the decomposition of inflation into

its sticky and flexible components used to construct the FCUC model. Second, we introduce

the specification and main details of the proposed FCUC model. Third, we briefly discuss our

Bayesian estimation procedure with details presented in the online appendix.

2.1 Sticky and flexible inflation

Bils and Klenow (2004) and Bryan and Meyer (2010) analyzed items in the CPI basket that have

a low and high frequency of price changes and termed their annualized price change sticky and

flexible inflation, respectively. The disaggregated CPI inflation time series compiled by Bryan

and Meyer (2010) allows for the following decomposition:

πt = ωSπ
S
t + ωFπ

F
t , (1)

where πt denotes the aggregate headline CPI inflation; while πSt and πFt denote the sticky and

flexible inflation components, respectively. The component weights ωS = 0.701 and ωF = 0.299

are fixed as the categories remain the same during the sample period.

2.2 A factor correlated unobserved components model

The proposed FCUC model is a factor model of sticky inflation πSt , flexible inflation πFt , and a

measure of long-run inflation expectations πEt . Our model features stochastic loadings, stochastic

volatility components, and stochastic cross-frequency correlations. For t = 1, ..., T , we have

πSt = τCt + ηSt , (2)

πFt = λtτ
C
t + ηFt , (3)

πEt = αt + βtτ
C
t + σE(εEt + φεEt−1), (4)
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where ηS and ηFt are the sticky and flexible inflation cycle, respectively; while σE and φ are the

standard deviation and moving average (MA) coefficient, respectively, of the transitory inflation

expectation error εEt . Additionally, τCt is a common trend inflation factor that is loaded onto by

πSt and πFt with loadings 1 and λt, respectively, as well as onto πEt with loading βt.

The main innovation of the FCUC model above concerns the dynamics of τCt . The latter is

specified as follows:

τCt = τCt−1 + γtη
S
t + δtη

F
t + ηCt , (5)

where ηCt is a common trend innovation and assumed to be Gaussian and independent of other

components. Importantly, the inclusion of γt and δt connects the common trend inflation with

the sticky and flexible inflation cycles in a time-varying manner. Although ηSt and ηFt appear

on the right-hand side of (5), this does not mean that the cycles affect the trend, but simply

that there are cross-frequency correlations. This specification facilitates our efficient Bayesian

estimation procedure, which we discuss in sections 2.3 and 3.2.

Furthermore, we consider stochastic volatility for the trend and cycle innovations. Specifically,

ηmt = exp

(
hmt
2

)
εmt , m ∈ {S, F,C}. (6)

The log-volatilities hmt specified in the equation above, the intercept of inflation expectations αt

in equation (4), the loadings λt and βt in equations (3) and (4), and the regression coefficients

γt and δt in equation (5) are modeled as independent random walks:

ft = ft−1 + σf ε
f
t , f ∈ {hS , hF , hC , α, β, λ, γ, δ}.

These latent dynamics capture low-frequency temporal movements that shift the FCUC system.

Lastly, εgt , g ∈ {S, F,C, hS , hF , hC , E, α, β, λ, γ, δ}, are independent standard Gaussian errors.

2.3 Bayesian estimation

We implement a Bayesian estimation procedure for the proposed FCUC model, so the

inference of trend inflation simultaneously integrates both filtering and parameter uncertainty.

Specifically, we use a Markov chain Monte Carlo (MCMC) sampling algorithm that

approximates the posterior distribution of latent states and model parameters using the loose
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prior described below.

The FCUC model’s parameters include all the innovation variances and the MA coefficient.

For the former, we assign independent gamma priors:

σ2g ∼ Γ(0.5, 0.5), g ∈ {hS , hF , hC , α, β, λ, γ, δ, E}.

Unlike the usual inverse-gamma prior, the gamma distribution does not exclude zero variance

a priori (Bitto and Frühwirth-Schnatter, 2019), and thus nests constant trend and volatility

models as special cases. The prior has 50% and 90% probability masses within [0, 0.455) and

[0, 2.706), respectively, implying an uninformative large tail. In the online appendix we show

that these posteriors are inverse Gaussian distributions, from which we can easily sample.

For the MA coefficient, we follow Chan et al. (2018) and use a truncated normal prior within

(−1, 1) that ensures invertibility, denoted by TN(−1,1)(.), but with a larger prior variance:

φ ∼ TN(−1,1)(0, 0.25).

All latent states are augmented with an uninformative zero-initialization period:

f0 ∼ N(0, 106), f ∈ {hS , hF , hC , α, β, λ, γ, δ}.

The structure of the prior described above allows the data to decide the temporal evolution

of the latent states, thus minimizing the influence of the prior distributions. The posterior

computation involves the fast precision sampler of Chan and Jeliazkov (2009) and the Gaussian

mixture stochastic volatility sampler of Kim et al. (1998). Full details of the MCMC algorithm

are provided in the online appendix.

3 Key stylized facts of U.S. inflation: sticky and flexible components

In this section we discuss, first, how the proposed FCUC model summarized by equations (2)

through (5) captures relevant stylized facts of the U.S. inflation and, second, how the FCUC

model offers further flexibility and insights to better understand inflation dynamics.

Section 3.1 presents a discussion on the dynamics of sticky, flexible and aggregate inflation;
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section 3.2 focuses on the role of cross-frequency stochastic correlation; and section 3.3 explains

the importance of long-run inflation expectations that anchor trend inflation.

3.1 Are sticky, flexible, and aggregate inflation similar?

The seminal UCSV model of Stock and Watson (2007) has been widely known as an accurate

representation of the dynamics of the U.S. inflation. It is defined by:

πt = τt + ηt, ηt = exp

(
ht
2

)
εt

τt = τt−1 + ητt , ητt = exp

(
hτt
2

)
ετt

ft = ft−1 + σf ε
f
t , f ∈ {h, hτ},

(7)

where τt and ηt represent the trend and cycle, respectively. εt, ε
τ
t , εht , and εh

τ

t are independent

standard Gaussian terms.

Shephard (2015) and Li and Koopman (2021) showed that the UCSV model implies an MA

forecasting function that dynamically discounts past observations, depending on the permanent

(or trend) volatility exp(hτt /2) and the transitory (or cycle) volatility exp(ht/2). This feature

allows the model to attribute inflation swings during the 1970s-80s oil crises and the 2007-9 GFC

to permanent and transitory changes, respectively, while tracking the Great Moderation amid the

Volcker-Greenspan-Bernanke regimes. In this sense, as documented by Shephard (2015), Lansing

(2022) and Jørgensen and Lansing (2024), the UCSV model allows for a dynamic signal-to-noise

ratio (SNR) that captures the time-varying persistence of trend inflation.

Given the relevance of the UCSV model, as a first exercise we fit this model to πSt and πFt

individually, with the respective superscripts added to τt and εt and their volatilities. The

weighted average of the estimated sticky and flexible trends (and cycles) corresponds to the

trend (and cycle) for the aggregate inflation. The estimation results are shown in figure 1.

As shown in the bottom panel, the weighted average of sticky and flexible inflation trends

obtained from two separate UCSV models does not fully correspond to the trend inflation

obtained from fitting the UCSV model to the aggregate inflation. Since trend inflation is

unobserved, it is not possible to decide a priori which of the two provides superior estimates.

Moreover, the error bands of ωSτ
S
t + ωF τ

F
t are wider than that of τSt , especially during the
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Figure 1: Permanent and transitory volatilities and trend inflation rates obtained from the
UCSV model. Top to bottom: estimated permanent volatility, transitory volatility, and trend

inflation. Left to right: estimation results for sticky inflation, flexible inflation, and aggregate inflation.

Rightmost: red indicates aggregate inflation; whereas black shows volatilities and trend implied by the

sticky-flexible inflation decomposition in (1), assuming independent components. Solid lines show the

posterior medians. Shaded areas and dotted lines show the (0.05, 0.95) posterior quantiles. Bottom

figures were cropped for readability, with some extreme inflation values (blue dots) outside the range.

COVID-19 pandemic. This suggests that the UCSV model attributes permanent and

transitory movements to the dynamics of inflation components in a different way, leading to

heightened estimation uncertainty. The large transitory volatility of πFt during the GFC and

the pandemic reduces the SNR, and thus yields a smooth τFt with a large posterior variance

that feeds into ωSτ
S
t + ωF τ

F
t .

These results also highlight that a separate treatment of sticky and flexible inflation overlooks

the common dynamics and correlation components. Bils and Klenow (2004) and Bryan and

Meyer (2010) show that some of the CPI categories have items that correspond to both sticky

and flexible inflation, including some food and motor vehicle items. This means that the joint

modeling of inflation trends in the FCUC model, summarized by equation (5), can better capture

aggregate trend inflation dynamics when using disaggregated components of inflation (Stock and

Watson, 2016). Clearly, the FCUC model implies the following aggregate trend inflation:

τt = (ωS + ωFλt)τ
C
t . (8)
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Let στt denote the conditional time-varying volatility of the FCUC trend inflation derived above.

Using equations (5) and (8), we have

στt = |ωS + ωFλt|στ
C

t ,

στ
C

t =
(
γ2t exp(hSt ) + δ2t exp(hFt ) + exp(hCt )

) 1
2 ,

(9)

where στ
C

t is the innovation volatility of τCt , or common permanent volatility.

Equation (9) shows that the FCUC model allows the permanent volatility to interact with

both sticky and flexible transitory volatilities in a time-varying way. Therefore, compared with

the individual estimation of UCSV models, the FCUC model offers greater flexibility to track

down the sources of aggregate inflation variation.

3.2 Is time-varying cross-frequency correlation present?

Standard UCSV models assume uncorrelated trends and cycles, so that permanent and transitory

shocks affect the system dynamics separately. There are two types of correlations that are

relevant in the context of multivariate UCSV models: (i) within-frequency correlation; and (ii)

cross-frequency correlation.

Within-frequency correlation captures either the correlation between trends or the correlation

between cycles, since trends and cycles capture the low- and high-frequency dynamics of the

time series, respectively. Given that a trend-cycle decomposition is applied to each component

of inflation, it is reasonable to assume within-frequency correlation due to overlapping item

categories and the potential time variation over the business cycle. Recently, Eo et al. (2023)

considered a bivariate UCSV (BUCSV) model for the inflation of manufacturing goods (MI)

and services (SI) along these lines. This model considers an UCSV model, as in (7), for both MI

and SI, as well as stochastic correlations between the trends and between the cycles. In doing

so, it is possible to attribute aggregate trend inflation variations to those of MI and SI.

We fit the BUCSV model to sticky and flexible inflation, with the estimates of within-frequency

correlations shown in figure 2. Across the whole sample period, we observe a near-perfect

correlation between the trends of sticky and flexible inflation, similar to the findings in Eo et al.

(2023), but no within-frequency correlation for the cycles. Hence, these BUCSV results indicate

that the co-movement between sticky and flexible inflation is dominated by common temporal
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Figure 2: Within-frequency stochastic correlations obtained from the BUCSV model. We

estimated the BUCSV model of Eo et al. (2023) for the sticky and flexible inflation rates. We report

the stochastic correlation coefficients between trends and between cycles of sticky and flexible inflation.

Lines and shaded areas indicate the posterior medians and (0.05, 0.95) posterior quantiles, respectively.

patterns in the low-frequency dynamics. Indirectly, the bottom left and middle panels of figure

1 also corroborate this result.

There are two main implications derived from these findings. Firstly, the precisely estimated

trend for sticky inflation, as shown in the bottom left panel of figure 1, can be incorporated into

any model that aims at estimating aggregate trend inflation, especially after the 1970s-80s oil

crises. We believe that this represents an advantage of the proposed sticky-flexible disaggregation

over the MI-SI disaggregation, where both trends are estimated with large uncertainty compared

to aggregate inflation (Eo et al., 2023). Indeed, as discussed by Bils and Klenow (2004) and

more recently by Coulombe et al. (2024), sticky inflation contains highly relevant forward-looking

information that is closely related to the determination of aggregate trend inflation.

Secondly, it is necessary to consider a factor model in order to model sticky and flexible

inflation trends. Specifically, the near-unity correlation coefficient between trends of sticky

and flexible inflation obtained from the BUCSV model suggests a single source of error. We

explicitly incorporate this idea via the common factor τCt , as in (2) and (3), into the proposed

FCUC model. Furthermore, the stochastic loading λt provides additional flexibility: given λt,

sticky and flexible trends are perfectly correlated, but otherwise their correlation is less than

one. It can be shown that the conditional within-frequency correlation trends is

Corrt−1(τ
C
t , λtτ

C
t ) =

1 + σ2λ

1 + exp

(
−
hCt−1

2
−
σ2
hC

4

)(
πCt−1
λt−1

)2
− 1

2

∈ (0, 1),
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which is positively related to λt−1. Therefore, λt controls the temporal strength of the correlation

between sub-component trends in the FCUC model.

As also mentioned in section 2.2, we believe that our main novelty is the introduction of cross-

frequency stochastic correlation, via regression coefficients γt and δt in equation (5), which has

been largely ignored in the literature on inflation modeling. Some notable exceptions are Hwu

and Kim (2019), Ball et al. (2022), and Dao et al. (2024). Hwu and Kim (2019) considered trend-

cycle correlation in aggregate inflation, finding that the inclusion of cross-frequency correlation

improves the UCSV model’s inflation forecasting performance. Ball et al. (2022) and Dao et al.

(2024) found that the global inflation surge following the pandemic is accompanied by headline

shocks, or transitory shocks to the deviation of headline inflation to core inflation, having strong

direct and pass-through effects on core inflation. This mechanism, if present, poses challenges

to the estimation of trend inflation since it requires to explicitly model how permanent and

transitory shocks propagate (Bernanke and Blanchard, 2024) and undermines the optimality of

monetary policy that only targets persistent price changes (Aoki, 2001; Nakamura and Steinsson,

2010; Eusepi et al., 2011).

In our FCUC model, trends are driven by the common factor τCt , so we can easily compute

the implied cross-frequency correlations using (5) and (9). Let ρCSt (ρCFt ) denote the correlation

between sticky (flexible) cycle innovation and trend factor innovation. We have

ρCSt =
1

σπ
C

t

γt exp

(
hSt
2

)
,

ρCFt =
1

σπ
C

t

δt exp

(
hFt
2

)
.

(10)

Hence, the proposed FCUC model also represents an extension of the correlated unobserved

components (CUC) model that allows for non-zero correlation between trend and cycle

innovations. The majority of CUC models focus on studying output potential and gap, and

aim to explain the lasting productivity slowdown.2 However, given the empirical and policy

importance of nominal and headline shocks, as in Nakamura and Steinsson (2010), Ball et al.

(2022) and Dao et al. (2024), it is clear that cross-frequency correlations should not be

overlooked when modeling price changes at different frequencies.

2Specifically, the long-run non-neutrality can be modeled via the time-to-build effect (Morley et al., 2003;
Grant and Chan, 2017; Li and Mendieta-Muñoz, 2022) and output hysteresis (Li and Mendieta-Muñoz, 2024;
Furlanetto et al., 2025).
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Finally, we point out that, as discussed by Trenkler and Weber (2016) and Li and Mendieta-

Muñoz (2022), there exists a set of non-trivial conditions for the identification of multivariate

CUC models. In order to understand how the FCUC model is identified, we first highlight that

a local level model (Shephard, 2015; Li and Koopman, 2021) leads to an integrated moving

average of order 1, IMA(1), reduced-form representation.3 The latter includes two parameters:

the MA coefficient and the innovation variance. Therefore, a bivariate local level model admits

a 2-dimensional vector IMA(1) representation with an MA coefficient matrix and a covariance

matrix, yielding 7 reduced-form parameters. A constant bivariate FCUC model contains 6

parameters: a factor loading, two correlation coefficients, and three innovation variances, thus

satisfying the order condition with an overidentified system.4

3.3 Can long-run inflation expectations anchor trend inflation?

It is known that CUC models tend to exacerbate the cross-frequency correlation in finite samples.

Morley et al. (2003), Trenkler and Weber (2016), Grant and Chan (2017), and Li and Mendieta-

Muñoz (2022) found that the trend-cycle correlation in real GDP is approximately −0.9 with

trend (potential) output subject to excess volatility and an uneven path. Moreover, CUC models

with a near-perfect (negative) correlation are also counter-intuitive to standard New Keynesian

models, as shown by Canova and Ferroni (2022), and can provide poor policy guidance in

practice.

One remedy is to connect trend inflation with long-run inflation expectations. Based on the

Beveridge-Nelson decomposition (Beveridge and Nelson, 1981), there is an equivalence between

trend and long-run rational expectations: τt = lims→∞Et(πt+s). Figure 3 shows our measure

of inflation expectations together with sticky, flexible, and aggregate inflation. The inflation

expectation series closely tracks the low-frequency behavior of the three inflation series in real

time, thus providing an “anchoring effect” that reduces the estimation uncertainty of trend

inflation. In section 4.1, we discuss our chosen inflation expectations data.

Faust and Wright (2013) and Chan et al. (2018) considered survey inflation expectations as

a regressor in the observation equation of a model similar to (7). They showed that

3A local level model is an unobserved components model with a random walk trend and a white noise cycle. In
other words, it is the UCSV model in (7) but with constant innovation variances.

4In this sense, we could add one extra parameter to incorporate the within-frequency correlation for cycles and
obtain exact identification. However, as also discussed above, results from the BUCSV model do not suggest
that this is a relevant feature. Hence, we prefer to estimate a more parsimonious model.
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Figure 3: Long-run inflation expectations, sticky inflation, flexible inflation, and aggregate
inflation. Long-run inflation expectations (black line) is plotted with sticky inflation (left figure),

flexible inflation (middle figure), and aggregate inflation (right figure). Blue dots show the actual

values for the different measures of inflation. Our measure of inflation expectation corresponds to the

10-year inflation expectations in Haubrich et al. (2012). Section 4.1 provides further details about the

latter. Figures were cropped for readability, with some extreme inflation values outside the range.

incorporating the cointegration between survey inflation expectations and trend inflation into

the model greatly reduces model uncertainty. In the same vein, our proposed FCUC model

considers inflation expectations πEt to load onto the common factor τCt in equation (4) and

uses additional information to estimate the local movements of trend inflation.

Since the GFC, inflation expectations have become a focal point of monetary policy,

representing both the target and benchmark that measure the effectiveness of forward

guidance during periods at the zero lower bound (ZLB) (Harrison, 2015; Sutherland, 2023). As

monetary policies discipline agents’ expectations (Müller et al., 2022), the latter can also feed

back into inflation dynamics via self-fulfilling mechanisms (see, e.g., Harrison, 2015; Angeletos

and Lian, 2018; Eusepi et al., 2021). Similar to the multivariate trend-cycle models of

Hasenzagl et al. (2022) and Ascari and Fosso (2024), our proposed FCUC model considers an

endogenous system for inflation and inflation expectations, and thus allows the expectation

formation process to be affected by inflation via βt with time variation stemming from different

economic policies and macroeconomic conditions.

Lastly, we point out that the intercept αt in the expectation process (4) models potential

persistent deviations of agents’ expectations from the underlying trend inflation, similar to the

specifications in Chan et al. (2018), Hasenzagl et al. (2022) and Comerford (2024). This equation

further allows for a stationary adjustment process captured by the MA error εEt , analogous to

the specification used by Chan et al. (2018).5

5As in Chan et al. (2018), it is also possible to consider an MA cycle in equations (2) and (3). We considered this

15



4 Results

This section comprises five parts. Section 4.1 provides a description of the data set employed

and motivates the choice of our measure of inflation expectations. Sections 4.2 and 4.3 present

a set of estimation results, including the estimates of aggregate trend inflation and other latent

processes. A discussion on inflation expectation and its relevance for the FCUC model is provided

in section 4.4. Finally, section 4.5 conducts a forecasting performance exercise among variants

of the FCUC and UCSV models. We present the posterior estimates of model parameters and

the mixing property of the Markov chain in the online appendix.

4.1 Data

Our study uses U.S. quarterly CPI, sticky, and flexible inflation rates, from 1967:Q3 to 2024:Q4

with a total of 231 quarters. The CPI is extracted from the Federal Reserve Bank of St. Louis;

whereas the sticky and flexible inflation rates are obtained from the Atlanta Fed following Bryan

and Meyer (2010).

As discussed in section 2.2, one crucial time series needed to estimate the proposed FCUC

model is the measure of long-run inflation expectations. We adopt the 10-year inflation

expectation time series constructed by the Federal Reserve Bank of Cleveland (2022). The

series is estimated by an extended model built on Haubrich et al. (2012) that follows a

structural no-arbitrage framework and uses an extensive market data set, including inflation

swaps and nominal yields. Its market-based construction yields a forward-looking,

risk-adjusted measure of long-run inflation expectations that is less susceptible to behavioral

biases, liquidity shocks, and sampling issues that are common in surveys (Müller et al., 2022;

Hasenzagl et al., 2022; Sutherland, 2023).

Hence, by incorporating real-time pricing and time-varying risk premia, the Cleveland Fed’s

inflation expectation time series offers increased robustness, particularly during periods of market

stress, thus representing a more reliable proxy for long-run inflation expectations.

potential modification, but the estimated coefficients are close to zero with a wide error band. These results
are available on request. Because of this, we follow instead the more standard UCSV model specification of
Stock and Watson (2007), Shephard (2015) and Li and Koopman (2021) for inflation dynamics.
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4.2 Trend inflation and stochastic volatility

Figures 4 and 5 plot the trend inflation estimates obtained from the FCUC model. Specifically,

figure 4 shows the posterior estimate of aggregate trend inflation, in comparison to the one

obtained from the UCSV model. Figure 5 shows the posterior estimates of the sticky and

flexible trend inflation. It also shows the stochastic loading λt, since the trends are constructed

following equations (2) and (3), where the sticky and flexible trend inflation are equal to the

common factor τCt and λtτ
C
t , respectively.
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Figure 4: Posterior estimates of the trend inflation obtained from the FCUC and UCSV models.
Trend inflation estimates obtained from the FCUC model are constructed following equation (8). Lines

show the posterior medians; whereas shaded areas and dotted lines show the (0.05, 0.95) posterior

quantiles for each model. Figure is cropped for readability, with some extreme inflation values (blue

dots) outside the range.

From figure 4, we see that compared with UCSV, the estimated trend inflation from our FCUC

model shows uniformly higher precision, as its error bands tend to be considerably narrower

during the whole period. This is due to the estimated positive cross-frequency correlations, as

captured by the regression coefficients γt and δt in (5). Based on (9), we see that the SNR of

the FCUC model is always larger than the one of the UCSV model without zero correlation.

This can potentially generate excess volatility in trend as in CUC models; however, the presence

of both πSt and πEt largely attenuates the unevenness of the trend estimates. Moreover, the

estimated aggregate trend inflation in the FCUC model seems to be mainly derived from τCt ,
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Figure 5: Posterior estimates of the sticky and flexible trend inflation rates obtained the FCUC
model. Left to right: sticky trend inflation (common factor) τCt , flexible trend inflation λtτ

C
t , and

time-varying loading of flexible inflation λt. Lines show the posterior medians; whereas shaded areas

show the (0.05, 0.95) posterior quantiles. Figure is cropped for readability, with some extreme inflation

values (blue dots) outside the range.

or the sticky trend. As shown in figure 5, the latter exhibits considerably narrower error bands

compared with the flexible trend and its respective time-varying loading λt.

The uncertainty in flexible trend is almost solely driven by λt, as τCt is precisely estimated.

This is not surprising, given the volatile flexible inflation that effects its trend. In the sticky

price model of Aoki (2001) and Adam and Weber (2019), this is also anticipated by the largely

price-taking behavior of the flexible sector. As a result, Bils and Klenow (2004) argued that

flexible inflation contains little forward-looking information. However, in principle, λt should

fluctuate around one, so that in the long run both sectors index to the same aggregate inflation.

Although this contrasts with our finding that λt is significantly below one, this argument is less

relevant if sectors are heterogeneous and subject to multisector productivity factors, as shown in

the menu cost model of Nakamura and Steinsson (2010) and found empirically in the 17-sector

factor model of Stock and Watson (2016). Indeed, in the data set of Bryan and Meyer (2010), all

inflation items related to housing are considered as flexible, with a distinct productivity factor

from sticky sectors such as healthcare and education (Foerster et al., 2022).

To further illustrate the reduced uncertainty of the aggregate trend inflation estimates

obtained from the proposed FCUC model, figure 6 shows these estimates only since the GFC

and compares them with the ones obtained from the BUCSV and UCSV models, where the

latter is fitted to sticky, flexible, and aggregate inflation rates separately.

We observe that the error bands obtained from the FCUC model are clearly narrower compared

with the BUCSV and UCSV models. Interestingly, the BUCSV model estimates a flat line for
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Figure 6: Posterior estimates of the sticky, flexible and aggregate trend inflation rates since the
GFC. Left to right: sticky, flexible, and aggregate trend inflation. Top row: FCUC and BUCSV

models. Bottom row: FCUC and UCSV models (fitted to sticky, flexible, and aggregate inflation

separately). Lines show the posterior medians; whereas shaded areas and dotted lines show the

(0.05, 0.95) posterior quantiles for each model. Blue dots show data points.

flexible trend inflation, which does not reflect adequately the relative increase in prices after

the COVID-19 recession. Related to the findings shown in figure 1 (bottom right panel), we

highlight that the aggregation of sticky and flexible trend inflation estimates obtained from two

separate UCSV models results in higher uncertainty for the aggregate trend inflation, especially

since the GFC. Lastly, the UCSV model does not reflect either the near-target trend inflation

between 2012 and 2019, which was due to well-anchored inflation expectations associated with

forward guidance during the initial ZLB period.

4.3 Cross-frequency correlations and variance decomposition

Figure 7 shows the posterior estimates of the stochastic volatility of the sticky and flexible cycles,

and the common trend innovation, as specified in equation (6).

We observe significant time variation of both transitory volatility series, whereas the volatility

of common trend innovation seems to be largely constant only with a slightly higher value during

the first oil crisis of the early 1970s. Notably, the sticky transitory volatility peaks at the second

oil crisis in the early 1980s but only mildly rises during the first one in 1974. Following the Great

Moderation, it plummets when the flexible transitory volatility quickly picks up the heightened

economic uncertainty during the 2001, GFC, and COVID-19 recessions. Importantly, different

19



1970 1980 1990 2000 2010 2020
0

1

2

3

4

5

6

1970 1980 1990 2000 2010 2020
0

2

4

6

8

10

12

14

16

1970 1980 1990 2000 2010 2020
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 7: Posterior estimates of the stochastic volatility components obtained from the FCUC
model. Left to right: sticky transitory volatility, flexible transitory volatility, and common permanent

volatility. Lines show the posterior medians; whereas shaded areas show the (0.05, 0.95) posterior

quantiles.

from the permanent volatility obtained from the UCSV model, shown in the top left panel of

figure 1, the sticky transitory volatility is precisely estimated during the pandemic. The fact

that it is the increase in flexible volatility the one that drives the aggregate inflation uncertainty

foreshadows our later discussion about the role of transitory shocks in driving trend inflation.

Given the unique behaviors of the three volatility series, figure 8 shows their implications for

the permanent and transitory volatility and persistence of the aggregate inflation: (i) the

aggregate permanent volatility στt , summarized by (9); (ii) the aggregate transitory volatility,

given by
√
ω2
s exp(hSt ) + ω2

F exp(hFt ); and (iii) the SNR, i.e., the permanent-to-transitory

volatility ratio that measures inflation persistence in UCSV models. We also compare these

results with the ones obtained from the UCSV model fit to aggregate inflation.

We find that the transitory volatility of both models resembles each other, with the one

obtained from the UCSV model slightly underestimating cyclical fluctuations during the

1970s-80s and, thus, attributing higher volatility to the trend. As a result, the UCSV model’s

permanent volatility is significantly higher during these two decades and presents much wider

error bands during the estimation period. Importantly, the UCSV model does not capture

meaningfully any increase in permanent volatility in the wake of the COVID-19 recession, so it

does not help to understand whether or not price changes are persistent. On the contrary, the

FCUC model greatly sharpens the permanent volatility estimate with a much narrower error

band. As the dynamic discounting feature of UCSV models relies on the estimates of

permanent and transitory volatility, more accurately estimated volatility components in the
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Figure 8: Aggregate permanent volatility, aggregate transitory volatility, and inflation
persistence. Top row: Aggregate permanent and transitory volatility components obtained from the

FCUC and UCSV models. Bottom row (y-axis in log scale): implied inflation persistence measured

by the SNR. Lines show the posterior medians; whereas shaded areas and dotted lines show the

(0.05, 0.95) posterior quantiles for each model. The top left figure is cropped for readability. The

UCSV’s model permanent and transitory volatility components are also reported in figure 1.

FCUC model can better distinguish between permanent shifts in inflation from transitory

movements.

Both Lansing (2022) and Jørgensen and Lansing (2024) discuss that the SNR is directly related

to the correlation coefficient between consecutive changes in the level of inflation and, therefore,

it can be regarded as a measure of inflation persistence. This conceptualization is closely related

to the “memory index” of Shephard (2015), who showed that the number of periods that a

rational agent would look back to predict inflation in the next period is inversely related to the

SNR. In other words, both contributions highlight that, when the SNR is high (low), changes

in inflation are more (less) likely to be persistent.

The SNR obtained from both models, illustrated in the bottom panel of figure 8, shows a

similar gradual decrease until the GFC and an increase afterwards. However, due to the high

uncertainty in the permanent volatility of aggregate inflation at the beginning of the COVID-

19 recession, the UCSV model fails to accurately capture the increasing inflation persistence,

which is better captured by our FCUC model (see also Ball et al., 2022 and Lansing, 2022 for

a discussion). Overall, these dynamics almost mirror the behavior of inflation itself, which has

been heavily influenced by changes in monetary policy—with the Volcker disinflation of the early
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1980s serving as the example par excellence. Hence, our findings provide evidence in favor of

monetary non-neutrality (Nakamura and Steinsson, 2010), the view that measures of inflation

persistence can be influenced by shifts in monetary policy itself (Daly, 2022), and reveal that

inflation dynamics have become more persistent since the GFC.

Figure 9 shows the time-varying cross-frequency correlation between the sticky (flexible)

inflation cycle and the common factor innovation component, summarized by the coefficient

ρCSt (ρCFt ) in (10). The bottom panel of figure 9 also shows the variance decomposition of the

aggregate trend inflation obtained from the FCUC model.
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Figure 9: Cross-frequency correlations and variance decomposition of the aggregate trend
inflation obtained from the FCUC model. Top row: ρCSt (left figure) and ρCFt (right figure)

as depicted by equation (10). Lines show the posterior medians; whereas shaded areas show the

(0.05, 0.95) posterior quantiles. Bottom row: variance decomposition based on equation (9).

This exercise demonstrates that, while transitory volatility can drive fluctuations in trend

inflation during recessions, its impact depends on the source of price shocks and is not time

invariant. In the first half of the sample, amid the two oil crises, the sticky cycle effects

importantly trend inflation, explaining 50% of its variation, 20% more than flexible cycle

shocks. This reflects the combined effect of a positive cross-frequency correlation and elevated

sticky-cycle volatility, or ρCSt and hSt , respectively. In the second half of the period, the relative

importance of these components shifts markedly: with ρCSt no longer significantly different

from zero, the contribution of the sticky cycle to trend inflation declines rapidly following the

Great Moderation; while flexible price shocks emerge as the dominant driver and account for
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90% of trend variation, particularly during the COVID-19 recession. Although Ball et al.

(2022) and Dao et al. (2024) suggest that headline shocks have only recently passed through to

core inflation, we find that the rising correlation between flexible shocks and common trend

innovations predates the pandemic and substantially contributed to the 2020-2 inflation surge.

Importantly, the volatility of the common trend inflation innovation, or the permanent

component hCt , remains largely stable and accounts for 60% of trend inflation fluctuations in

the 1990s when flexible price shocks were subdued, but only 10% in recent periods. This

highlights the growing influence of relative price shocks on trend inflation and the policy

challenges they pose. In the context of optimal monetary policy under macroeconomic

uncertainty, Alvarez and Lippi (2020), Gopinath (2022) and Bernanke and Blanchard (2024)

caution against the complications that large relative price shocks introduce for both level and

average inflation targeting, due to monetary non-neutrality arising from their spillovers into

core inflation. Our results quantify the time-varying strength of this spillover and challenge the

view of Aoki (2001) that central banks should focus solely on sticky or core inflation. We

believe that our findings suggest that this conventional approach can break down importantly

during sharp recessions when the assumption of flexible sectors as the only passive price takers

no longer holds (see also Nakamura and Steinsson, 2010, Lafuente et al., 2021 and Rubbo,

2024). In light of interacting trend inflation and multisector price shocks, it becomes essential

for central banks to move beyond conventional core inflation metrics and consider alternative

welfare-maximizing targets (Nakamura and Steinsson, 2010; Adam and Weber, 2019), such as

those defined by nominal distortions—see, e.g., Eusepi et al. (2011), Stock and Watson (2020),

and Coulombe et al. (2024).

4.4 The relevance of long-run inflation expectations

Figure 10 shows the posterior estimates of αt and βt, that is, the time-varying intercept and

time-varying factor loading, respectively, associated with the inflation expectation equation (4).

Similar to Chan et al. (2018) and Hasenzagl et al. (2022), αt in our FCUC model captures

the potential persistent deviations of inflation expectations from trend inflation; while βt is a

regression coefficient that connects both series.

The results show that the evolution of αt has been stable, approximately around 2% during the
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Figure 10: Time-varying intercept and factor loading of inflation expectations obtained from
the FCUC model. The time-varying intercept αt (left figure) and time-varying loading βt (right

figure) of inflation expectations are shown in equation (4). Lines and shaded areas show the posterior

medians and (0.05, 0.95) quantiles, respectively.

period, with an inverted-U shape and wider error bands during the 1970s-80s, followed by greater

stability and narrower bands thereafter. This evolution is consistent with better anchoring

amid the Volcker-Greenspan-Bernanke regimes and the introduction of inflation targeting that

followed. By contrast, βt exhibits a similar inverted-U pattern early on but declines noticeably

afterwards. Additionally, it remains positive but consistently below one, indicating that changes

in sticky trend inflation exert only limited influence on expectations and vice versa. These

results suggest persistent deviations from rational expectations, a finding similar to Chan et al.

(2018) and Hasenzagl et al. (2022), who used survey-based expectations.

To assess the importance of including inflation expectations in the FCUC model, figure 11

reports the cross-frequency correlations, trend inflation, and permanent volatility estimates

obtained from the FCUC model excluding πEt by omitting equation (4). The estimates of the

other latent variables are fairly similar and therefore are omitted.

Including the long-run inflation expectations equation visibly reduces the posterior error

bands in the FCUC model, thus reducing estimation uncertainty. Although the cross-frequency

correlation between the flexible inflation cycle and the common factor, ρCFt , remains broadly

similar with or without expectations (top right panel of figure 11), omitting πEt leads to an

inflated estimate of the transitory influence from sticky inflation, as shown by a much larger

ρCSt (top left panel of figure 11). This mirrors the well-known trend-cycle identification issue in

CUC models, where the correlation coefficient can approach unity in absolute value due to a

small sample bias (Morley et al., 2003; Wada, 2012; Li and Mendieta-Muñoz, 2024). In our

setting, the omission of πEt leads to an overestimated SNR, evident in both the higher
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Figure 11: Posterior estimates obtained from the FCUC model with and without the inflation
expectations equation (4). Black and red lines show the posterior estimates of the FCUC model

with inflation expectations and without inflation expectations, respectively. Lines show the posterior

medians; whereas shaded areas and dotted lines show the (0.05, 0.95) posterior quantiles for each

model.

aggregate permanent volatility στt (bottom left panel) and the more erratic trend inflation path

(bottom right panel), especially prior to the Great Moderation.

By contrast, incorporating πEt into the FCUC model improves identification via an expanded

information set, allowing long-run expectations to load directly onto the common factor and

thereby mitigating the inflated correlation problem. Unlike traditional factor models that rely

on large cross-sectional data (Bai and Ng, 2008), our model gains precision with minimal

added noise, as the error variance in εEt remains small (see the online appendix). As a result,

the FCUC model with πEt offers an intuitive yet robust decomposition of inflation dynamics,

assigning clearer roles to the underlying unobserved components. In this sense, our model is

easily scalable due to the factor structure. Future research may explore broader information

sets that include measures of economic slack and granular sectoral inflation series to help

understand the emergence and transmission of flexible price shocks.

4.5 Forecasting performance

To assess what model features can generalize the observed inflation data, we compare the out-of-

sample forecasting performance of the FCUC model and some of its variants with UCSV models,
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focusing on the last two decades of major economic downturns. We use an expanding window

design with the first training sample covering the period 1967:Q3-2006:Q4.6 Then, all models

are re-estimated with the sample moved one quarter ahead. We consider h-quarters ahead

forecasts, where h ∈ {1, 2, 3, 4}. The full testing sample covers the period 2007:Q1-2024:Q4, the

same as in figure 6, which gives us 72 and 69 forecast errors for each model under h = 1 and

h = 4, respectively. We use the root mean squared errors (RMSE) and log predictive density

scores (LPDS) to evaluate point and density forecast, respectively. Models with lower RMSE

and higher LPDS are preferred.

Besides the proposed FCUC model, we consider nine competing models, which can be grouped

into three classes. First, simple models include: (i) a random walk (RWalk) model; (ii) a model

that only uses sticky inflation data to forecast (Sticky); and (iii) the expectation-in-gap-form

(ExG) model of Faust and Wright (2013) which, despite its simplicity, is “amazingly hard to

beat by much,” as mentioned by the authors (p. 17).7 Second, UCSV models include: (i) the

original model of Stock and Watson (2007); (ii) the ExG-TVP model of Chan et al. (2018) that

extends the ExG model by considering a random walk trend inflation plus MA(1) dynamics

for long-run inflation expectations, a time-varying AR coefficient for the inflation cycle, and

stochastic volatility components for both the inflation trend and cycle; and (iii) the BUCSV

model of Eo et al. (2023) that we modified to incorporate sticky and flexible inflation. Third,

FCUC models include: (i) the FCUC model without long-run inflation expectations (FCUC-

noEx); (ii) the FCUC model with constant cross-frequency correlation coefficients (FCUC-cCr);

and (iii) the FCUC model without cross-frequency correlation coefficients (FCUC-noCr).8

Main results are reported in table 1. The RWalk model performs worst across all horizons,

reflecting its inability to accommodate large swings during the GFC and the COVID-19

pandemic. Surprisingly, the Sticky model consistently outperforms the ExG model, despite the

latter’s AR(1) cycle, which suggests that sticky inflation captures more accurately shifts in

inflation dynamics than long-run inflation expectations alone. Additionally, the ExG-TVP

6A rolling window design yields nearly identical results. The latter is available upon request.
7In the ExG model, trend inflation is fixed at the survey long-run inflation expectations level and the inflation

cycle is modeled as an autoregressive (AR) process of order 1.
8All models are estimated via Bayesian methods except for the three simple models. The forecast is the posterior

mean:
∫
g(πt+h)p(πt+h|Dm,θm)p(θm|Dm)dθm, where Dm denotes the training data set of model m with a

vector of model parameters θm. For the RMSE, g(πt+h) = πt+h is simulated from the model of interest. For
the LPDS, g(πt+h) = 1 is used to evaluate the density ordinate of the observed h-quarter ahead inflation. The
integral is replaced by an average in which 105 samples of θm are drawn from p(θm|Dm).
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Table 1: Point and density forecast accuracy of models

RMSE LPDS
h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

Simple models
RWalk 3.690 4.148 4.091 4.295 −2.850 −2.901 −2.908 −2.995
Sticky 3.122 3.197 3.281 3.397 — — — —
ExG 3.245 3.459 3.434 3.542 −2.706 −2.719 −2.691 −2.718

UCSV models
UCSV 3.070 3.194 3.230 3.296 −2.414 −2.473 −2.552 −2.587
ExG-TVP 3.105 3.164 3.223 3.241 −2.988 −2.982 −2.988 −2.855
BUCSV 3.115 3.172 3.233 3.290 −2.403 −2.460 −2.542 −2.551

FCUC models
FCUC 3.082 3.146 3.205 3.266 −2.409 −2.449 −2.536 −2.542
FCUC-noEx 3.067 3.133 3.212 3.280 −2.414 −2.458 −2.536 −2.547
FCUC-noCr 3.188 3.215 3.244 3.290 −2.444 −2.503 −2.568 −2.573
FCUC-cCr 3.149 3.192 3.226 3.275 −2.423 −2.456 −2.545 −2.552

Notes: Forecast accuracy is evaluated at one- through four-quarter horizons using root mean squared errors (RMSE)

for point forecasts and log predictive density scores (LPDS) for density forecasts. Out-of-sample forecasts cover the

period 2007:Q1-2024:Q4, with model parameters re-estimated recursively using expanding windows beginning in

1967:Q2. Bold numbers indicate the two best models.

model outperforms the ExG model, thus indicating the importance of modeling time-varying

dynamics for the generalization of the inflation process. At h = 4, the ExG-TVP model yields

the lowest RMSE, followed closely by the FCUC model, which suggests some evidence of mean

reversion at longer horizons. At h = 1, the UCSV model performs best, followed closely by the

FCUC-noEx model. This result indicates that, for short-run forecasting, parsimonious models

with dynamic discounting that stems from trend and cycle stochastic volatility are preferred

(Shephard, 2015; Lansing, 2022). Also, the gains derived from incorporating long-run inflation

expectations emerge at longer horizons, which can be seen by the relative improvement in the

performance of the FCUC model, thus supporting the view that expectations help to anchor

trend inflation (Chan et al., 2018; Hasenzagl et al., 2022; Müller et al., 2022). Lastly, we

highlight that the FCUC models, with and without long-run inflation expectations, rank

among the top performers, indicating that cross-frequency correlations and their time variation

capture inflation dynamics robustly, and that their exclusion affects RMSE more than omitting

long-run expectations.
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For density forecasts at h = 1, the FCUC model ranks second and yields a slightly lower

LPDS than the BUCSV model (while other models are much lower). The main feature in both

models is the highly positive correlation between sticky and flexible trend inflation that feeds into

the aggregate trend inflation. Therefore, the modeling of overlapping trends seem to provide

a better conditional central tendency and, consequently, a more accurate predictive coverage

during periods of economic distress. The FCUC model turns out to be the best density forecaster

for all h > 1, closely followed by the FCUC-noEx and FCUC-cCr models. This ranking clarifies

that both long-run inflation expectations and the time variation in cross-frequency correlations

improve the predictive coverage, especially the latter, as suggested by the LPDS at h > 2.

Finally, we test for equal predictive ability among model pairs, excluding simple models, using

the Diebold–Mariano test (Diebold and Mariano, 1995; Diebold, 2015), with the small-sample

correction of Harvey et al. (1997). Results are shown in table 2, which reports test statistics

based on squared error differentials (point forecasts) and LPDS differentials (density forecasts).

Due to the limited testing sample size and volatile inflation environment, we do not find

numerous significant rejections of the null hypothesis of equal predictive performance.

Nevertheless, three findings are noticeable. First, FCUC models differ significantly from UCSV

models in point forecasts for h > 1; while for h = 1 only the FCUC-noCr model shows a

significant difference. Given the FCUC-noCr model’s higher RMSE and absence of richer

trend-cycle dynamics, this supports our earlier conclusion that parsimony benefits mainly

short-run forecasting. Second, FCUC models differ from UCSV models in density forecasts

across all horizons, thus indicating that the inclusion of inflation components, long-run

inflation expectations, and cross-frequency correlations enhances predictive coverage. Third,

for density forecasts within the class of FCUC models, the FCUC-noEx model tends to differ

from the FCUC-noCr and FCUC-cCr models at most horizons, but only from the FCUC

model at h = 1. This highlights that the time-varying cross-frequency correlation is a key

driver of predictive gains, and implies that the evolving long-run spillovers from sticky and

flexible prices in the last two decades complicate the policy makers’ assessment of trend

inflation and should be explicitly accounted for in econometric models.

In sum, the above results show that, while UCSV models benefit from dynamic discounting,

the proposed FCUC model improves out-of-sample generalizability through structural

28



Table 2: Tests for equal predictive ability of models

UCSV ExG-TVP BUCSV FCUC-noEx FCUC FCUC-noCr FCUC-cCr

h = 1
UCSV — 1.19 1.00 1.81∗ 1.66∗ 0.88 2.13∗∗

ExG-TVP 0.43 — 2.59∗∗ 2.28∗∗ 2.12∗∗ 2.68∗∗ 2.42∗∗

BUCSV 1.91∗ 1.66∗ — 1.37 1.91∗ 1.16 1.19
FCUC-noEx 0.78 1.20 1.83∗ — 1.66∗ 2.80∗∗ 0.93
FCUC 1.61 0.67 0.39 2.34∗∗ — 3.02∗∗ 1.80∗

FCUC-noCr 2.01∗∗ 0.71 1.62 4.71∗∗ 2.49∗∗ — 3.04∗∗

FCUC-cCr 1.30 0.67 1.65∗ 2.58∗∗ 0.48 2.02∗∗ —

h = 2
UCSV — 1.91∗ 0.79 1.35 1.69∗ 0.77 1.82∗

ExG-TVP 0.93 — 2.25∗∗ 2.03∗∗ 2.11∗∗ 2.21∗∗ 2.04∗

BUCSV 2.30∗∗ 1.09 — 0.67 2.13∗∗ 2.16∗∗ 1.78∗

FCUC-noEx 1.62∗ 1.24 0.14 — 1.12 3.25∗∗ 1.14
FCUC 1.87∗ 1.78∗ 0.63 1.19 — 3.36∗∗ 1.92∗

FCUC-noCr 1.92∗ 0.65 0.77 3.32∗∗ 2.60∗∗ — 4.33∗∗

FCUC-cCr 2.04∗∗ 2.02∗∗ 0.94 2.96∗∗ 1.38 0.78 —

h = 3
UCSV — 1.89∗ 0.72 1.99∗∗ 1.69∗ 1.14 1.83∗

ExG-TVP 1.88∗ — 2.67∗∗ 2.41∗∗ 2.41∗∗ 2.41∗∗ 2.30∗∗

BUCSV 2.59∗∗ 2.28∗∗ — 1.54 2.00∗∗ 2.29∗∗ 1.67∗

FCUC-noEx 1.38 0.71 0.60 — 1.63 0.72 2.26∗∗

FCUC 1.65∗ 0.80 1.83∗ 4.25∗∗ — 3.34∗∗ 1.86∗

FCUC-noCr 1.98∗∗ 0.83 1.16 0.19 0.83 — 2.12∗∗

FCUC-cCr 1.61 1.76∗ 1.80∗ 0.31 0.80 2.14∗∗ —

h = 4
UCSV — 1.79∗ 1.17 1.65∗ 1.89∗ 0.73 1.84∗

ExG-TVP 2.54∗∗ — 2.48∗∗ 2.22∗∗ 2.10∗∗ 2.27∗∗ 2.26∗∗

BUCSV 0.96 1.93∗ — 2.16∗∗ 1.68∗ 2.63∗∗ 1.74∗

FCUC-noEx 0.55 0.23 0.78 — 1.28 1.95∗ 1.35
FCUC 0.07 0.34 1.90∗ 1.89∗ — 5.80∗∗ 2.30∗∗

FCUC-noCr 0.01 0.61 1.31 1.13 1.92∗ — 4.23∗∗

FCUC-cCr 0.14 0.61 1.40 2.09∗∗ 1.41 1.82∗ —

Notes: We report the absolute t-statistics obtained from the Diebold–Mariano test (Diebold and Mariano, 1995;

Diebold, 2015) with the finite-sample correction of Harvey et al. (1997). We compare models pairs indicated by

rows and columns. One and two asterisks denote rejection of equal predictive ability at the 10% and 5% levels,

respectively. For each forecast horizon, the lower- and upper-triangular part of the table show the test results based

on loss differentials for squared forecast errors (point forecasts) and log predictive density scores (density forecasts),

respectively.

heterogeneity and cross-frequency dynamics, especially during periods of heightened volatility.
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5 Summary and conclusion

This paper develops a factor correlated unobserved components (FCUC) model that jointly

estimates the trend and cycle dynamics of the sticky and flexible components of U.S. inflation.

By incorporating stochastic volatility, stochastic loadings, time-varying cross-frequency

correlations, and long-run inflation expectations, the model generalizes existing unobserved

components frameworks to better reflect heterogeneity in price adjustment and the effect of

transitory shocks on trend inflation. The proposed FCUC model is estimated for the period

1967:Q3-2024:Q4 using Bayesian methods. The results show that, flexible inflation,

traditionally considered as being driven by transitory and policy irrelevant relative price

shocks, has strongly affected trend inflation. This spillover begins to emerge around 2015 and

becomes particularly pronounced during the COVID-19 recession, while sticky inflation,

comprising purely persistent price shocks since 1980s, accounts for only part of the aggregate

trend dynamics.

These findings show the importance of accounting for the evolving interactions between high-

and low-frequency disaggregated components of inflation when evaluating inflation persistence.

From a policy perspective, the presence of cross-frequency correlation challenges the argument

that transitory price movements warrant little policy response as they have short-lived aggregate

effects (see, e.g., Aoki, 2001, Alvarez and Lippi, 2020, Powell, 2021, and Lansing, 2022). By

contrast, our analysis supports Ball et al. (2022), Gopinath (2022) and Bernanke and Blanchard

(2024) in the aftermath of the COVID-19 pandemic: while large price shocks in flexible prices

(such as food and energy prices) accounted for much of the initial inflation surge, we cannot

rule out monetary tightening due to their persistent effects on aggregate inflation. Overall, our

results suggest that monetary authorities should not disregard temporary price fluctuations,

particularly in flexible price components, as these can heavily influence long-run inflation and

expectations formation, an idea emphasized by earlier studies including Nakamura and Steinsson

(2010) and Eusepi et al. (2011). The proposed FCUC framework thus offers a robust tool for

improving trend inflation measurement and informing forward-looking policy decisions.
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1 Sampling procedure

The MCMC sampler iterates over the following three major blocks:

• Sample model parameters θ = (σg, φ), g ∈ {hS , hF , hC , E, α, β, λ, γ, δ}, conditional on

latent states and initializations, or (θ|π,f , f0), where f = {hS , hF , hC , τC , α, β, λ, γ, δ};

• Sample latent states conditional on model parameters and initializations, or (f |π, f0,θ);

• Sample initializations conditional on model parameters and latent states, or (f0|π,f ,θ).

In the description of the sampling procedure above, π =
(
(πS)′, (πF )′, (πE)′

)′
collects the data,

where bold fonts indicate the vector of a time series variable, e.g., πS = (πS1 , ..., π
S
T )′.

1.1 Sample model parameters

Sample variances

Let the gamma prior in section 2.3 of the main text be denoted by σ2g ∼ Γ(a, b) with prior

p0(σ
2
g) ∝ (σ2g)

a−1 exp(−bσ2g). (1)

For σ2f , we have

Hf = e1f0 + εf , εf ∼ N(0, σ2fIT ),

where IT is a T × T identity matrix, es is the s-th unit vector in RT , and H is a T × T matrix

that first differences f , or

H =



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0

...
...

. . .
. . .

...

0 0 · · · −1 1


.

This yields the conditional likelihood

p(f |σ2f , f0) ∝ (σ2f )−
T
2 exp

(
− 1

2σ2f
f̃
′
H ′Hf̃

)
, (2)

where f̃ = f −H−1e1f0 = f − 1f0, and 1 is a vector of ones. Combining the likelihood (2)
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with the prior (1), we can derive

p(σ2f |f , f0) ∝ (σ2f )−
T
2
−a exp

(
− f̃

′
H ′Hf̃

2σ2f
+ 2bσ2f

)
.

This is the kernel of the generalized inverse Gaussian (GIG) distribution. We follow Eisenstat

et al. (2016) and sample the variance parameters as follows:

σ2f |f , f0 ∼ GIG
(
a− T

2
, 2b, f̃

′
H ′Hf̃

)

for f = {hS , hF , hC , α, β, λ, γ, δ}.

To sample σ2E , we use equation (4) in the main text. We write the latter in matrix form:

π̃E = Hφε
E , εE ∼ N(0, σ2EIT ),

π̃E = πE −α− β � πC ,
(3)

where � indicates element-by-element product, and

Hφ =



1 0 0 · · · 0

−φ 1 0 · · · 0

0 −φ 1 · · · 0

...
...

. . .
. . .

...

0 0 · · · −φ 1


.

Following (2), the conditional likelihood in this case is

p(πE |σ2E ,α,β, φ) ∝ (σ2E)−
T
2 exp

(
− 1

2σ2E
(π̃E)′(HφH

′
φ)−1π̃E

)
.

Combing it with the prior (1) gives the conditional posterior

p(σ2E |πE ,α,β, φ) ∝ (σ2E)−
T
2
−a exp

(
−

(π̃E)′(HφH
′
φ)−1π̃E

2σ2E
+ 2bσ2E

)
.
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We sample from the following GIG distribution:

σ2E |πE ,α,β, φ ∼ GIG
(
a− T

2
, 2b, (π̃E)′(HφH

′
φ)−1π̃E

)
.

Sample MA coefficient

Using (3), we have the conditional likelihood

p(πE |σ2E ,α,β, φ) ∝ exp

(
− 1

2σ2E
(π̃E)′(HφH

′
φ)−1π̃E

)
,

such that the gamma prior (1) is not conjugate. We implement a standard Metropolis-Hastings

step. Let φ̂ and V̂ar(φ̂) denote the mean and variance, respectively, of the Laplace approximation

(denoted by ∼∗, meaning approximate distribution up to location and scale),

φ|πE , σ2E ,α,β ∼∗ N
(
φ̂, V̂ar(φ̂)

)
, (4)

where the parameters are defined by:

φ̂ = arg max
φ

[
log p(πE |σ2E ,α,β, φ) + log p0(φ)

]
,

V̂ar(φ̂) = −
(

∂2

(∂φ)2
[
log p(πE |σ2E ,α,β, φ) + log p0(φ)

] ∣∣∣
φ=φ̂

)−1
,

where p0(φ) is the truncated normal prior for the MA coefficient defined in section 2.3 of the

main text.

We generate a draw φnew from the approximate distribution (4). Let φold denote the current

draw in the Markov chain and let N(x;u, v) denote the density ordinate of a normal distribution

with mean u and variance v evaluated at x. The draw is accepted with probability

min

[
p(πE |σ2E ,α,β, φnew)p0(φ

new)N(φold; φ̂, V̂ar(φ̂))

p(πE |σ2E ,α,β, φold)p0(φold)N(φnew; φ̂, V̂ar(φ̂))
, 1

]
,

otherwise φnew = φold.
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1.2 Sample latent states

Sample common trend τC

In brief, to sample τC is to sample εS . First, we notice that

πft = λt(π
S
t − εSt ) + εFt . (5)

Similarly, we rewrite the equation for the inflation expectations, or equation (4) in the main

text:

πEt − αt = βt(π
S
t − εSt ) + εEt + θεEt ,

which yields

π̂Et︸︷︷︸
πt−αt−βtπSt

= −βtεSt + εEt + θεEt . (6)

Using (5) to replace εFt in the transition dynamics of the common trend, or equation (5) in the

main text, we have

τC = τCt−1 + γtε
S
t + δt(π

F
t − λtπSt + λtε

S
t ) + ηCt

= τCt−1 + δt(π
F
t − λtπSt )︸ ︷︷ ︸
zt

+ (γt + δtλt)ε
S
t︸ ︷︷ ︸

xt

+ηCt . (7)

In matrix form, equation (7) becomes

HτC = e1τ
C
0 + z + x� εS + ηC .

Combining the equation above withHπS = HτS+HεS (that is, pre-multiplyingH to equation

(2) in the main text) yields

HτS = e1τ
C
0 + z + (diag(x) +H)εS + ηC , (8)

where diag(y) denotes a diagonal matrix of the same dimension as the vector y whose elements

also form the diagonal elements of the matrix. Casting equation (3) in matrix form yields

π̂E = diag(−β)εS +Hφε
E . (9)
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Putting (8) and (9) together yields

HπS − e1τC0 − z
H−1φ π̂

E


︸ ︷︷ ︸

π∗

=

 diag(x) +H

H−1φ diag(−β)


︸ ︷︷ ︸

X

εS +

ηC
εE


︸ ︷︷ ︸
ε∗

, ε∗|hC , σ2E ∼ N(0,Σ),

where

Σ =

diag(exp•(hC)) O

O σ2EIT

 ,
exp•(.) denotes element-wise exponential and O is a T × T matrix of zeros. Using the Bayesian

regression lemma (where π∗ is the vector of responses and X is the matrix of regressors), we

have the conditional posterior

εS |π,λ,α,β, δ,γ,hC ,hS , φ, σ2E ∼ N(µC ,P
−1
C ),

where

PC = exp•(−hS) +X ′Σ−1X,

µC = P−1C X
′Σ−1π∗.

Since all the matrices involved in the derivation above are tri-diagonal, we use the fast

precision sampler of Chan and Jeliazkov (2009) to sample from the above multivariate

Gaussian conditional posterior, utilizing efficient routines of sparse matrix inversion and

Cholesky decomposition that are available in Matlab R© 2022b.

Sample loading λ

It is instrumental to notice that we cannot sample λt directly from the flexible inflation equation

(3) in the main text, conditional on τCt . This is so because τCt and the innovation term (flexible

cycle) ηFt are correlated, or E(τC(ηF )′|γ, δ) 6= O, which is an endogeneity issue that requires

us to first de-correlate them for correct posterior inference.
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We write equation (3) in the main text in matrix form:

πF = τC � λ+ εF

= ν + diag(τC)λ+ η̃F , η̃F |hF ,hCmδ ∼ N(0,ΣF ), (10)

where ν and ΣF is the conditional mean and covariance of εF (conditional on τC). To derive

these, we write the transition equation of the common trend in matrix form:

HτC = e1τ
C
0 + γ � εS + diag(δ)εF + ηC , ηC |hC ∼ N(0,diag(exp•(hC))), (11)

which is a regression on ηF . Given the conditional prior ηF |hF ∼ N(0, diag(exp•(hF ))), we

can compute the conditional mean and covariance matrix using the Bayesian regression lemma

as follows:

(
ΣF
)−1

= diag(exp•(−hF )) + diag(δ)′diag(exp•(−hC))diag(δ)

ν = ΣFdiag(δ)′diag(exp•(−hC))(HτC − e1τC0 − γ � εS).

With the equation above determined, we go back to equation (10), which is a regression on λ.

Based on the conditional prior λ|λ0, σ2λ ∼ N(1λ0, σ
2
λ(H ′H)−1) derived from Hλ = e1λ0 + ελ

with ελ|σ2λ ∼ N(0, σ2λIT ), using the Bayesian regression lemma we obtain

λ|πF ,πS , τC ,γ, δ,hC ,hF , σ2λ, λ0 ∼ N(µλ,P
−1
λ ),

where

P λ =
1

σ2λ
(H ′H) + diag(τC)′(ΣF )−1diag(τC),

µλ = P−1λ

(
λ0
σ2λ
H ′e1 + diag(τC)′(ΣF )−1(τF − v)

)
.
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Sample regression coefficients γ and δ

We rewrite (11) as a regression on γ and δ. It follows that

HτC − e1τC0︸ ︷︷ ︸
π̂C

= diag(((εS)′, (εF )′)′)︸ ︷︷ ︸
Xε

γ
δ

+ ηC , ηC |hC ∼ N(0, diag(exp•(hC))).

Given the conditional prior

γ
δ

∣∣∣γ0, δ0, σ2γ , σ2δ ∼ N ((γ0, δ0)′ ⊗ 1, (σ2γ , σ
2
δ )
′ ⊗ (H ′H)−1

)
,

using the Bayesian regression lemma leads to the following conditional posterior:

γ
δ

∣∣∣πS ,πF , τC ,λ,hC , σ2γ , σ2δ , γ0, δ0 ∼ N(µγ,δ,P
−1
γ,δ),

where

P γ,δ =

(
1

σ2γ
,

1

σ2δ

)′
⊗ (H ′H) +X ′εdiag(exp•(−hC))Xε,

µγ,δ = P−1γ,δ

((
γ0
σ2γ
,
δ0
σ2δ

)′
⊗H ′e1 +X ′εdiag(exp•(−hC))π̂C

)
.

Sample regression coefficients α and β

We rewrite (3) as a regression on α and β. It follows that

πE = diag((1′, (τC)′)′)︸ ︷︷ ︸
XE

α
β

+ ε̃E , ε̃E |φ, σ2E ∼ N(0, σ2E(HφH
′
φ)).

Given the conditional prior

α
β

∣∣∣σ2α, σ2β, α0, β0 ∼ N
(
(α0, β0)

′ ⊗ 1, (σ2α, σ
2
β)′ ⊗ (H ′H)−1

)
,
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using the Bayesian regression lemma leads to the following conditional posterior:

α
β

∣∣∣πE , τC , φ,hC , σ2E , σ2α, σ2β, α0, β0 ∼ N(µα,β,P
−1
α,β),

where

P α,β =

(
1

σ2α
,

1

σ2β

)′
⊗ (H ′H) +

1

σ2E
X ′E(HφH

′
φ)−1XE ,

µα,β = P−1α,β

((
α0

σ2α
,
β0
σ2β

)′
⊗H ′e1 +

1

σ2E
X ′E(HφH

′
φ)−1π̂E

)
.

Sample stochastic volatility hm, m ∈ {S, F,C}

With the aforementioned latent states sampled, we obtain ηm, m ∈ {S, F,C}, which are sufficient

statistics for the log volatility hm. Let κm = (log[(ηm1 )2], ..., log[(ηmT )2])′. We suppress the

superscript for presentation. Then, equation (6) in the main text becomes

κ = ITh+ ζ, (12)

where ζ = (ζ1, ..., ζT )′ with ζt being the logarithm of the square of standard Gaussian innovation

terms. Specifically, ζt is log-χ2 distributed with one degree of freedom. We follow Kim et al.

(1998) and approximate the nonstandard distribution by using a 7-component Gaussian mixture

via data augmentation:

ζt ≈
7∑
i=1

1{qt=i}N(νi, vi),

where νi and vi are tabulated by Kim et al. (1998), and the prior probabilities of the mixing

component qt ∈ {1, ..., 7} are also tabulated and given by

P (qt = i) = qi, i = 1, ..., 7,

with qi > 0 and
∑7

i=1 qi = 1. It can be verified that the first several moments of ζt are well

approximated by the auxiliary representation. This means that we can modify (12) as follows:

κ = ITh+ ε?, ε?|q ∼ N(ν,diag(v)).

9



Given the conditional prior h|h0, σ2h ∼ N(1h0, σ
2
h(H ′H)−1), we use the Bayesian regression

lemma and derive the following conditional posterior:

h|η, h0, σ2h, q ∼ N(µh,P
−1
h ),

where

P h =
1

σ2h
H ′H + diag(−v),

µh = P−1h

(
h0
σ2h
H ′e1 + diag(−v)(κ− v)

)
.

We then update the mixing components via a categorical distribution with the following

conditional posterior:

P (qt = i)|κt, ht ∝
qi√
vi

exp

(
− 1

2vi
(κt − νi − ht)2

)
, t = 1, ..., T.

1.3 Sample initializations

For f ∈ {hS , hF , hC , α, β, λ, γ, δ}, we can write

Hf = 1f0 + εf , εf |σ2f ∼ N(0, σ2fIT ).

Provided the diffuse prior shown in section 2.3 of the main text, or f0 ∼ N(0,M) with M = 106,

we have the conditional posterior given by

f0|f , σ2f ∼ N(µf0 , σ
2
f0),

where

1

σ2f0
=

1

M
+

1

σ2f
e′1e1,

µf0 =
σ2f0
σ2f
e′1Hf .
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We can further simplify the expression above as follows:

f0|f1, σ2f ∼ N

 f1/σ
2
f

1/M + 1/σ2f
,

(
1

M
+

1

σ2f

)−1 .

A straightforward modification is made for the initialization of the common inflation trend,

given by

τC0 |τC1 , γ1, δ1, εS1 , εF1 , hC1 ∼ N

(
(τC1 − γ1εS1 − δ1εF1 ) exp(−hC1 )

1/M + exp(−hC1 )
,

(
1

M
+ exp(hC1 )

)−1)
.

2 Mixing properties and posterior statistics of model parameters

All results obtained from the FCUC model presented in the main text, except for the expanding-

window forecasting exercise, are based on a post-burn in sample of 10,000 MCMC runs (with

5,000 initial runs). We further thin the chain, so that the posterior sample of size N = 2, 500

consists of every fourth draw obtained from the MCMC runs. Estimation takes approximately

6 minutes on a low-end laptop bought in 2015. Results based on 150,000 runs are virtually

identical.
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Figure 1: Posterior traces of parameters obtained from the FCUC model. Titles indicate parameters,

following the same notations of the main text, and the 0.05 and 0.95 quantiles of their posterior

distributions. Red lines and values show the posterior medians.
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Figure 1 shows the posterior traces obtained from the post-burn in sample of the FCUC model

parameters. We also indicate posterior quantiles, including the 5th, 50th, and 95th percentile

of each parameter’s posterior distribution. Visual inspection suggests satisfactory mixing of the

Markov chain.
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Figure 2: Autocorrelation functions of parameters obtained from the FCUC model. Titles indicate

parameters, inefficiency factor (IEF) and effective sample size (ESS).

Figure 2 shows the autocorrelation function (ACF) of model parameters. For all plots, we

observe that the ACFs converge to zero, which suggests a well-mixed Markov chain. The least

efficient parameters are β0 and α0, the initialization parameters of the regression coefficients

in the measurement equation of the long-run inflation expectations, i.e., equation (4) in the

main text. This may have to do with the fact that the majority of the information used for

identifying trend inflation comes from the sticky and flexible inflation rate time series, with

long-run inflation expectations offering only a marginal contribution. This result also resonates

with our finding in the main text that long-run inflation expectations show persistent deviations

from the assumption of rational expectations and their anchoring effect for the model is mainly

effective during the two oil crises of the 1970s-80s.

We summarize the convergence diagnostics via the inefficiency factor (IEF) and the effective

sample size (ESS), also reported in figure 2. The IEF measures the number of posterior draws
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needed to achieve the same inferential accuracy as one independent draw from the posterior.

Thus, we prefer smaller IEFs (closer to one). The ESS indicates the number of posterior draws

that can be regarded as independent and, therefore, we prefer a larger ESS (closer to N , the

posterior sample size). Following Robert et al. (1999), these are defined by

IEFn = 1 + 2
n∑
i=1

(
1− i

n

)
ρi,

ESSn =
N

1 + 2
∑n

i=1 ρi
,

where ρi denotes the i-th ACF of the posterior trace of a model parameter, 1−i/n is the sequence

of Bartlett weights, and n is a chosen cutoff that truncates the ACF. We choose n to be 120.

It matters little if we further increase the cutoff, as the Bartlett weights effectively end ρi at a

linear rate, which is sufficient for a well-mixed chain. It can be shown that the IEFn converges

to the integrated autocorrelation time (long-run variance of the Markov chain, if scaled by the

variance of the chain) as n→∞. If the chain is not convergent, then the IEF explodes.

A rule-of-thumb for valid posterior inference is that the ESS must be larger than N/10, which

is satisfied by all the parameters of the FCUC model, even the least efficient ones, β0 and α0.

For σhS , the chain is highly well-mixed. Note that its ESS is larger than N . This, however,

does not suggest a numerical issue, but simply shows the fact that we were too conservative and

thinned the chain more than necessary. Therefore, the MCMC algorithm for the FCUC model

behaves satisfactorily, yielding a well-mixed chain and enabling valid posterior inference.
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