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Abstract

We propose an unobserved components model with stochastic volatility and structural
shocks to explore the relevant factors that influence trend inflation in the USA. Using
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find that four structural shocks have significant effects on trend inflation: productivity,
price mark-up, government policy, and finance. During and in the aftermath of the
Great Recession, trend inflation became more volatile after incorporating the structural
shocks, implying that long-run inflation expectations tended to be less well-anchored
in these periods.
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1 Introduction

According to central bankers, policymakers and economic theory, well-anchored inflation
expectations are of utmost importance for the formulation and implementation of
macroeconomic policies. In the same vein, the trend inflation rate—a latent variable that
can be regarded as an estimate of long-run inflation expectations—has become an
important tool for tracking down the behavior of long-run inflation expectations and for
gauging whether the latter are well-anchored or not. The seminal work of Stock and
Watson (2007) introduced the unobserved components model with stochastic volatility
(UCSV model), which has become one of the most prominent tools for estimating trend
inflation. Ever since then, various modeling approaches aimed at improving the trend
inflation estimates derived from the original univariate UCSV model have been
developed—see, for example, Chan et al. (2016), Mertens (2016), Stock and Watson
(2016), Chan et al. (2018), Hwu and Kim (2019), Mertens and Nason (2020) and Nason
and Smith (2021), among others. However, the statistical procedures implemented by this
strand of literature typically assume that the trend in inflation follows a random walk, thus
treating the underlying dynamics of long-run inflation expectations as a black box.

Recently, some papers have tried to investigate the relevant factors that drive the trend
in inflation. The estimation results presented by Cecchetti et al. (2017) show that labor
market slack has a statistically significant—although quantitatively small—effect on trend
inflation in the USA, but that inflation expectations have no effect at all. Correa-López et al.
(2019) found a significant but quantitatively small role of short-term inflation expectations,
economic slack, and openness variables in twelve Euro Area countries. Kamber and Wong
(2020) focused on how global factors (namely, foreign shocks) affect both trend inflation and
the inflation gap, finding that these have only a marginal role in driving the former but an
important influence on the latter. In summary, although some factors have been found to
effect trend inflation, the respective parameter estimates are quantitatively small.1

When conducting a regression analysis of trend inflation on aggregate variables, it can
be challenging to eliminate the possible endogeneity issues, which can result in positive or
negative biases associated with the potentially relevant variables. Barnichon and Mesters
(2020) have recently proposed utilizing well-chosen independently identified shocks derived
from structural models to deal with such endogeneity issues in macroeconomic
equations—for example, when estimating the Phillips curve. In order to investigate the
underlying drivers of trend inflation in the spirit of Barnichon and Mesters (2020), we
propose an unobserved components model with stochastic volatility and structural shocks
(UCSV-X model), which we estimate using a Bayesian estimation procedure. The proposed
framework aims at exploring the relevant structural shocks that influence trend inflation in
the USA by incorporating the eight shocks that can be regarded as the main structural
determinants of the US economy according to the DSGE-dynamic factor model of Gelfer
(2019): monetary policy, government policy, productivity, price mark-up, wage mark-up,
preference, investment, and a finance shock.2

1For example, in the papers by Cecchetti et al. (2017) and Correa-López et al. (2019), the coefficients
on the significant factors that may affect trend inflation are always smaller than 0.1.

2Fu and Li (2022) have also used these eight structural shocks to mitigate the possible endogeneity
problems when estimating the uncovered interest parity condition with time-varying parameters.
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The main findings can be summarized as follows. First, we find that only four structural
shocks have significant effects on trend inflation: the productivity shock, the price mark-
up shock, the government policy shock, and the finance shock. Specifically, the significant
effects of the shocks to productivity, price mark-up, and government policy are quantitatively
important. Second, although the estimated trend inflation obtained from the UCSV-X model
is similar to the one obtained from the UCSV model up until the Great Recession of 2007-9,
the trend inflation estimates obtained from the UCSV-X model are more volatile during and
in the aftermath of the Great Recession. Following Bernanke (2007), well-anchored long-run
inflation expectations should be relatively insensitive to incoming data, which implies that
trend inflation estimates should not respond to transitory shocks. However, the empirical
findings derived from the UCSV-X model imply that long-run expectations of inflation have
tended to be less well-anchored because of the effects derived from the four structural shocks
during and after the Great Recession of 2007-9. Finally, we implement a Bayesian model
comparison exercise to justify our UCSV-X model. The results show strong evidence in favor
of the UCSV-X model over the UCSV model.

The rest of the paper is organized as follows. Section 2 presents the UCSV-X model
and describes the relevant aspects of the Bayesian estimation approach and the Bayesian
model comparison strategy. Section 3 summarizes and discusses the main empirical results.
Finally, section 4 concludes the paper.

2 Model and estimation

This section is composed of three parts. First, we introduce the UCSV-X model, which we
use to study the effects of structural shocks on the trend component of inflation. Second,
we describe the implementation of the Bayesian estimation procedure. Third, we summarize
the Bayesian model comparison strategy for comparing the UCSV-X and UCSV models.

2.1 The unobserved components model with stochastic volatility
and structural shocks

Following the unobserved components model with stochastic volatility of inflation developed
by Stock and Watson (2007), the proposed UCSV-X model aims at studying the effects of a
set of relevant structural shocks for trend inflation. Assuming that πt denotes the inflation
rate, we construct the following model:

πt = τt + ϵπt , ϵπt ∼ N (0, eht), (1)

τt = τt−1 + x′
t−1βτ + ϵτt , ϵλt ∼ N (0, egt), (2)

ht = ht−1 + ϵht , ϵht ∼ N (0, ω2
h), (3)

gt = gt−1 + ϵgt , ϵgt ∼ N (0, ω2
g), (4)

where τt is the trend inflation; ϵπt is the inflation gap; ht and gt are the stochastic volatilities
associated with the inflation rate and trend inflation, respectively; ϵτt , ϵ

h
t , and ϵgt are mutually

and serially uncorrelated error terms; and xt is a vector that contains the eight structural
shocks identified by the DSGE model of Gelfer (2019). Hence, the proposed UCSV-X
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model decomposes πt into τt and ϵπt , where both unobserved components have time-varying
volatility evolving according to a random walk process, and quantifies the response of τt to xt

via the estimated vector of parameters βτ . Importantly, as shown in equation (2), the effect
of each of the eight structural shocks on τt is measured by incorporating the lagged structural
shocks, that is, xt−1. Therefore, we interpret these estimation results to be informative in
the Granger causality sense.

The structural shocks contained in xt correspond to the ones identified by Gelfer (2019),
who extended the Federal Reserve Bank of New York (FRBNY) DSGE model with financial
frictions of Del Negro and Schorfheide (2013) by considering a data-rich environment.3 In
brief, he constructed a DSGE-dynamic factor model (DSGE-DFM) to identify the main
shocks that drive the structural determinants of the US economy. The FRBNY DSGE-
DFM has two main advantages: (i) the series that are not directly incorporated inside the
DSGE model are allowed to load on economic variables and structural processes that are
inside the DSGE model; and (ii) it produces better forecasts of variables that are directly
modeled inside the DSGE model (including GDP, consumption, investment growth, inflation,
and interest rates). Thus, Gelfer (2019)’s model provides more robust identified structural
shocks than the original FRBNY DSGE model.

The eight relevant structural shocks derived from Gelfer (2019)’s FRBNY DSGE-DFM
are the following: a monetary policy shock, which corresponds to an unexpected shock to the
risk-free interest rate driven by the monetary authority; a government policy shock, which
corresponds to a spending shock to the government portion of GDP driven by the fiscal
authority; a total factor productivity shock faced by intermediate firms that affect firms’
production; a price mark-up shock—a shock to the mark-up above marginal costs that
monopolistically competitive intermediate firms charge final good producing firms; a wage
mark-up shock—a shock to the monopolistic power households have over their specialized
labor; a preference shock—a shock to the discount rate that alters households’ consumer
and savings decisions; an investment shock—a shock that affects the marginal efficiency of
investment of capital producers; and, finally, a finance shock driven by entrepreneurs and
banks, which corresponds to a risk shock that affects the spread between the bank deposit
rate and the bank lending rate. The posterior medians of the eight structural shocks used
to estimate the UCSV-X model are plotted in figure 1 below.

The UCSV-X model presented in equations (1) through (4) considers that, consistent
with the Beveridge–Nelson decomposition, the trend in inflation, τt, corresponds to the
infinite-horizon forecast of the inflation rate, πt, conditional on an information set available
in period t, Ωt:

τt = lim
j→∞

E [πt+j|Ωt] . (5)

As discussed by Mertens (2016), defining τt as an expectation has important consequences

3The FRBNY DSGE model by Del Negro and Schorfheide (2013) represents an extension of the Smets
and Wouters (2003, 2007) New Keynesian DSGE model that incorporates credit market frictions, which
follow the financial accelerator model developed by Bernanke et al. (1999). Following also the work of
Boivin and Giannoni (2006) and Kryshko (2011), Gelfer (2019) considered the model of Del Negro and
Schorfheide (2013) and proceeded to incorporate a large set of economic and financial series (ninety-seven
quarterly data series) in the estimation of the state parameters and the structural DSGE parameters using
an adaptive Metropolis-within-Gibbs sampling algorithm.
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Figure 1: Posterior medians of the eight structural shocks estimated from the FRBNY
DSGE-DFM model of Gelfer (2019) for the USA, 1985Q1-2018Q3

for the dynamics of πt since differencing equation (5) yields a unit root process for τt:

τt = τt−1 + lim
j→∞

E [πt+j|Ωt]− lim
j→∞

E [πt+j|Ωt−1] = τt−1 + et, (6)

where et denotes the trend shocks, which form a martingale-difference sequence. Therefore,
from equations (2) and (6) it is possible to observe that:

et = x′
t−1βτ + ϵτt , (7)

which implies that τt follows a random walk given the trend shocks et that can also influence
its trajectory.

To summarize, by including the eight shocks that drive the structural determinants of the
US economy, the UCSV-X model proposed in this section quantifies the relative importance
of each structural shock for trend inflation. In this sense, this model specification is related
to the recent work by Carvalho et al. (2023), who developed a theory for the inflation trend
where the latter is driven by long-run inflation expectations such that these are affected
by short-run inflation surprises. The proposed UCSV-X model considers a broader set of
information that can influence long-run inflation expectations by explicitly incorporating the
set of structural shocks into the estimation of trend inflation.

2.2 Bayesian estimation

We assume the following prior distributions: τ0 ∼ N (µτ0 , Vτ0), h0 ∼ N (µh0 , Vh0), and g0 ∼
N (µg0 , Vg0), where µτ0 = µh0 = µg0 = 0 and Vτ0 = Vh0 = Vg0 = 10. We choose a non-
informative prior for βτ , thus assuming that βτ ∼ N (βτ

0 , Vβτ ), where βτ
0 = 0n×1, and Vβτ =

10In. We also assume that ω2
h and ω2

g follow a inverse gamma distribution as follows: ω2
h ∼

IG(νh, Sh) and ω2
g ∼ IG(νg, Sg), such that νh = 3, Sh = 1 ∗ (νh − 1), νg = 3, and Sg =

1 ∗ (νg − 1).
We estimate the UCSV-X model depicted in equations (1) through (4) using Markov chain

Monte Carlo (MCMC) methods. Specifically, our sampling scheme comprises the following
steps:
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1. Draw τ from p(τ |y, x, h, g, τ0, βτ ).

2. Draw βτ from p(βτ |τ, x, g, βτ
0 , Vβτ ).

3. Draw h from p(h|y, τ, h0, ω
2
h).

4. Draw g from p(g|τ, x, τ0, βτ , ω
2
g).

5. Draw τ0 from p(τ0|τ, x, g, βτ , µτ0 , Vτ0).

6. Draw g0 from p(g0|g, ω2
g , µg0 , Vg0).

7. Draw h0 from p(h0|h, x, g, µh0 , Vh0).

8. Draw ω2
h from p(ω2

h|h, h0, νω2
h
, Sω2

h
).

9. Draw ω2
g from p(ω2

g |g, g0, νω2
g
, Sω2

g
).

Since the main purpose of our paper consists in exploring how the structural shocks
in xt−1 affect the trend inflation τt, in this section we only describe steps 1 and 2 of the
sampling algorithm. This is so because the implementation of steps 3 through 9 is standard,
so a summary of these steps is presented in appendix A.

To sum up, we use the precision sampler developed by Chan and Jeliazkov (2009) to
sample τ . We first stack equation (1) over t to obtain π = τ + z. Next, we stack equation
(2) over t and obtain Hτ = ατ + Xβτ + ϵτ . Left-multiplying the latter by H we have that
τ = H−1ατ +H−1Xβ +H−1ϵτ , where

H =


1 0 0 0 . . . 0
−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
...

...
...

...
. . . . . .

0 0 0 0 −1 1

 , and ατ =


τ0
0
0
...
0

 .

Let us denote Σh = diag(eh1 , eh2 , . . . , ehT ) and Σg = diag(eg1 , eg2 , . . . , egT ). The
conditional likelihood given the states τ corresponds to:

(2π)−
T
2 |Σh|−

1
2 e−

1
2
(y−τ)′Σ−1

h (y−τ). (8)

The prior density of τ implied by equation (2) is given by:

(2π)−
T
2 |(H ′Σ−1

g H)−1|−
1
2 e−

1
2
(τ−H−1ατ−H−1Xβτ )′H′Σ−1

g H(τ−H−1ατ−H−1Xβτ ). (9)

Therefore, combining equations (8) and (9) we have that:

(τ |y, x, h, g, τ0βτ ) ∼ N (τ̂ , K−1
τ ),

where Kτ = Σ−1
h +H ′Σ−1

g H and τ̂ = K−1
τ (Σ−1

h y +H ′Σ−1
g (ατ +Xβτ )).

Finally, the prior density of βτ is given by:

(2π)−
n
2 |Vβτ |−

1
2 e−

1
2
(βτ−βτ

0 )
′V −1

βτ
(βτ−βτ

0 ), (10)

so that combining equations (8) and (10) we have:

(βτ |τ, x, g, βτ
0 , Vβτ ) ∼ N (β̂τ , K

−1
βτ

),

such that Kβτ = V −1
βτ

+X ′Σ−1
g X and β̂τ = K−1

βτ
(V −1

βτ
βτ
0 +X ′Σ−1

g (τ −H−1ατ )).
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2.3 Model comparison

We follow a standard Bayesian strategy to carry out the model comparison between the
UCSV-X and UCSV models for the US inflation rate. Assuming that y is the actual observed
data, the posterior odds ratio, i.e., the ratio of the two posterior model probabilities, can be
specified as:

p(UCSV-X|y)
p(UCSV|y)

=
p(y|UCSV-X)
p(y|UCSV)

× p(UCSV-X)

p(UCSV)
,

where p(UCSV-X|y) and p(UCSV|y) are the posterior probabilities for the UCSV-X and
UCSV models, respectively; p(y|UCSV-X) and p(y|UCSV) are the marginal likelihoods
under the UCSV-X and UCSV models, respectively; and p(UCSV-X) and p(UCSV) are the
prior probabilities for the UCSV-X and UCSV models, respectively. Therefore,
p(UCSV-X|y)/p(UCSV|y) is the posterior odds ratio; p(y|UCSV-X)/p(y|UCSV) is the
Bayes factor; and p(UCSV-X)/p(UCSV) is the prior odds ratio.

Assuming that the two models are equally probable a priori, the prior odds ratio is equal
to one, so the posterior odds ratio is equal to the Bayes factor. Since the UCSV model is
nested in the UCSV-X model, we use the Savage-Dickey density ratio to compute the Bayes
factor (Verdinelli and Wasserman , 1995):

BF =
p(βτ = 0)

p(βτ = 0|y)
. (11)

The Bayes factor BF in favor of the unrestricted UCSV-X model shown in equation (11)
computes the Bayes factor as the density ratio p(βτ = 0)/p(βτ = 0|y). If βτ = 0 is more
likely under the prior relative to the posterior—that is, the numerator is larger than the
denominator in equation (11), then there is evidence in favor of the unrestricted UCSV-X
model.

3 Empirical results

We computed the inflation rate πt as the annualized log percentage change of the core
personal consumption expenditures (PCE) index, i.e., πt = 400 ln(Pt/Pt−1), where Pt is the
quarterly core PCE index extracted from the Federal Reserve Bank of St. Louis Economic
Database (FRED). We considered the PCE inflation rate because, as mentioned by Chan
et al. (2018), its historical data has been revised to reflect methodology changes and
the Federal Reserve’s long-run inflation objective is stated in terms of PCE inflation. The
estimation period was 1985Q1-2018Q3 since the structural shocks identified by the FRBNY
DSGE-DFM of Gelfer (2019) are only available for this period. Figure 2 shows the πt series.

Table 1 presents the main results obtained from the UCSV-X model, showing the effects
of a one standard deviation increase in each structural shock contained in xt−1 on the trend
inflation τt, measured by the parameters βτ in equation (2).

The main results can be summarized as follows. First, we find that only four structural
shocks affect the trend component of the inflation rate: the productivity shock, the price
mark-up shock, the government policy shock, and the finance shock. The estimated credible
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Figure 2: Core PCE inflation rate in the USA, 1985Q1-2018Q3

Table 1: Estimated effects of structural shocks on US trend
inflation, 1985Q1-2018Q3a

Structural shocks Posterior means of βτ parameters
Productivity shock 0.213***
Investment shock -0.113
Preference shock -0.023
Government policy shock -0.112**
Finance shock -0.064**
Monetary policy shock 0.054
Price mark-up shock -0.191**
Wage mark-up shock 0.003

Notes: aThe inflation rate corresponds to the core PCE inflation rate.

***Indicates that the 95% credible interval excludes zero.

**Indicates that the 90% credible interval excludes zero.

intervals for the posterior means of the parameters on these four lagged structural shocks
exclude zero, which suggests that such structural shocks can influence the trend inflation in
the USA.

Second, the productivity shock is the only one that has a positive effect on the inflation
trend; while the price mark-up shock, the government policy shock, and the finance shock
affect negatively the trend component of the inflation rate. Long-run inflation expectations
tend to increase when the economy experiences a productivity shock, possibly reflecting
the higher expected long-run inflation due to a total factor productivity shock faced by
intermediate firms which would allow them to increase prices for final goods producing firms.
Long-run expectations of inflation tend to decrease when the economy experiences a price
shock—that is, a shock to the mark-up above marginal costs that intermediate firms charge
final good-producing firms, possibly capturing the increased search pressure by firms that
implies more competition in the economy and that pushes down long-run expected inflation.

8



This theoretical mechanism is also emphasized by Bénabou (1992) and Hwu and Kim
(2019), who found that trend inflation is negatively correlated with the price mark-up shock
and that there is a negative correlation coefficient between innovations to trend inflation and
the inflation gap, respectively.

Third, we find that the relevant policy shock that influences long-run inflation
expectations is the government policy shock and not the monetary policy shock. If the
economy experiences a shock to the government portion of GDP driven by the fiscal
authority, long-run expected inflation tends to decline. Thus, our results corroborate the
findings by Dupor and Li (2015), who also found that increases in government spending
led to a decline in survey measures of expected inflation (although the effect is not
statistically different from zero in their benchmark specification). Finally, we also find a
smaller negative effect of a finance shock—a risk shock that increases the spread between
the bank deposit and lending rates—on trend inflation, showing that a higher interest rate
spread tends to decrease expectations of inflation as entrepreneurs and banks expect a
reduction in economic activity.

Figure 3 below shows the trend inflation obtained from the estimated UCSV-X model
compared with the one obtained from the standard UCSV model in order to show how the
incorporation of the structural shocks affects the estimates of trend inflation. It is possible
to observe that the two series follow closely each other; however, the two estimates of trend
inflation can differ substantially mainly during and in the aftermath of the Great Recession
of 2007-9. This result indicates that long-run expectations of inflation have tended to be
less well-anchored during and in the aftermath of the Great Recession because of the effects
associated with the four relevant structural shocks identified above—namely, productivity,
price mark-up, government policy, and finance.

In addition, in figure 4 we compare the stochastic volatility of the trend inflation rate
obtained from the UCSV-X and UCSV models. We find that the two time-varying volatilities
obtained from both models are virtually identical since the Great Recession of 2007-9. This
suggests that the less anchored expectations of inflation—captured by the more volatile trend
inflation in the UCSV-X model—are more likely associated with the relevant structural
shocks rather than due to higher stochastic volatility estimates derived from the model
specification.

Finally, to justify our model specification, we carried out the Bayesian model comparison
exercise between the UCSV-X and UCSV models described in section 2.3. We obtained that
the 2log(BF) is 57.66. Since the 2log(BF) is greater than 10, following Kass and Raftery
(1995) we interpret this result as strong evidence in favor of the UCSV-X model over the
UCSV model. This result implies that incorporating the structural shocks provides useful
information for estimating the trend inflation in the USA.

4 Concluding remarks

This paper aims at identifying the relevant structural shocks that can influence the trend
in inflation in the USA. To do so, we provide an extension of the seminal UCSV model
which consists in incorporating the eight structural shocks that can be regarded as the main
structural determinants of the US economy into the estimation of trend inflation. We call this
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Figure 3: Trend inflation estimates for the US economy obtained from the UCSV-X and UCSV
models. The inflation rate corresponds to the core PCE inflation rate for the period 1985Q1-2018Q3.
Shaded areas represent the 68% credible interval of the estimates obtained from the UCSV-X model

Figure 4: Posterior estimates of the time-varying standard deviation of the trend component of
the inflation rate in the USA, egt/2, obtained from the UCSV-X and UCSV models. The inflation
rate corresponds to the core PCE inflation rate for the period 1985Q1-2018Q3. Shaded areas represent the

68% credible interval of the estimates obtained from the UCSV-X model
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proposed extension the UCSV-X model, which is estimated for the period 1985Q1-2018Q3
using a Bayesian sampling algorithm.

The main results can be summarized as follows. First, we identify that only four
structural shocks have significant effects on the trend component of the inflation rate: the
productivity shock, the price mark-up shock, the government policy shock, and the finance
shock. Second, since the Great Recession of 2007-9, the trend inflation estimates obtained
from the UCSV-X model are more volatile than the ones obtained from the UCSV model.
These findings imply that long-run expectations of inflation have been less well-anchored
because of the effects derived from the four relevant structural shocks that effect trend
inflation during and in the aftermath of the Great Recession. Finally, the results obtained
from a Bayesian model comparison exercise show strong evidence in favor of the UCSV-X
model over the UCSV model, which means that the structural shocks contain relevant
additional information in informing the estimates of trend inflation.
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A Further details on the Bayesian sampling estimation

procedure

This appendix provides the relevant details regarding steps 3 through 9 outlined in section
2.2. First, in steps 3 and 4, we draw h and g from p(h|y, τ, h0, ω

2
h, βz, ρ) and

p(g|τ, x, τ0, βτ , ω
2
g), respectively, following the auxiliary mixture sampler of Kim et al.

(1998).
Second, with respect to steps 5 through 7, we have that:

(τ0|τ, x, g, β, µτ0 , Vτ0) ∼ N (τ̂0, K
−1
τ0

),

(g0|g, ω2
g , µg0 , Vg0) ∼ N (ĝ0, K

−1
g0

),

(h0|h, x, g, µh0 , Vh0) ∼ N (ĥ0, K
−1
h0

),

where Kτ0 =
1

Vτ0
+ 1

eg1
and τ̂0 = K−1

τ0
(
µτ0

Vτ0
+ τ1−x1βτ

eg1
); Kg0 =

1
Vg0

+ 1
ω2
g
and ĝ0 = K−1

g0
(
µg0

Vg0
+ g1

ω2
g
);

Kh0 =
1

Vh0
+ 1

ω2
h
and ĥ0 = K−1

h0
(
µh0

Vh0
+ h1

ω2
h
).

Finally, to implement steps 8 and 9, we point out that the conditional densities of ω2
h

and ω2
g are:

(ω2
h|h, h0) ∼ IG(νω2

h
+

T

2
, (Sh + (h− h0)

′H ′H(h− h0))/2),

(ω2
g |g, g0) ∼ IG(νω2

g
+

T

2
, (Sg + (g − g0)

′H ′H(g − g0))/2).

14


	Utah_Working.Papers_Cover
	Fu_MendietaMunoz_2023_Structural.shocks.trend.inflation
	Introduction
	Model and estimation
	The unobserved components model with stochastic volatility and structural shocks
	Bayesian estimation
	Model comparison

	Empirical results
	Concluding remarks
	Further details on the Bayesian sampling estimation procedure


