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Abstract 
A growing body of evidence suggests a link between climate and conflict. In contrast, the link between climate and 

cooperation remains much less investigated, although it has been studied in the context of transboundary river 

basins. Even for transboundary waters, however, earlier results have not decisively answered whether the effect of 

climate on conflict or on cooperation is stronger. Here we concurrently investigate both cooperation and conflict in 

transboundary river basins across the world as two potential responses to changes in climatic factors. Our results 

indicate that one-standard deviation changes in climate variables affect cooperation more than conflict in absolute 

terms, although effects on conflict are large in relative terms. Furthermore, lower water availability is associated 

with worse outcomes both through fewer cooperation events and more frequent conflicts. While higher temperatures 

are associated with more frequent cooperation, the projected decrease in precipitation and soil moisture projected for 

many regions of the globe may offset positive effects of temperature, and reinforcing cooperative activities should 

therefore be a policy priority. It is clear that including a full set of potential responses – positive, negative and none - 

are needed to understand the climatic influence on regional human cooperation and conflict. We encourage further 

studies that investigate such full-spectrum effects also for other situations than transboundary river basins. 
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Introduction 

 

The question of whether climate is associated with the risk of international and regional-

scale conflicts and disputes has spurred increasing attention from the research community 

in recent years. New datasets and approaches have led to a veritable surge of investigations 

(e.g., Scheffran and Battaglini 2010; Okpara et al. 2016; Serdeczny et al. 2016), which have 

lately also been fueled by disagreements over methods, results and conclusions (Buhaug 

2010; Scheffran et al. 2012; Raleigh et al. 2014; Hsiang and Meng 2014; Cane et al. 2014). 

Naturally, as emissions of greenhouse gases continue to rise (Myhre et al. 2013), with 

attendant effects on the climate system in many regions of the globe, the issue is also of 

great importance to human society and its adaptation to climate change (Carleton et al. 

2016; Carleton and Hsiang 2016). 

 

A recent review urged for caution in drawing conclusions about a link between climate and 

regional conflicts (Bernauer et al. 2012). However, although the authors emphasize that 

previous studies have not always shown robust results, the review acknowledges that 

conflicts may arise in certain situations due to climate stress. Reinforcing this notion, a 

recent synthesis article of quantitative climate-conflict research concluded that a large 

majority of the 60 papers surveyed therein indicated a link between climate and conflict 

(Hsiang et al. 2013). The types of conflicts studied in these syntheses are generally violent 

in nature, but some nonviolent effects are also included, such as removal of political leaders 

(Hsiang et al. 2013). Over a range of regions and temporal scales, and across different types 
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of climatic influence, these results suggest a clear effect of climate on human conflicts and 

disputes.  

 

Whether violent or non-violent, disputes also have a counterpart: cooperation. There are 

reasons to believe that cooperation, as well as disputes, could be affected by climate 

factors. If disputes can arise over a resource that is stressed by climate, as evidence 

suggests, the tendency to cooperate over the resource could also be adversely affected. On 

the other hand, a common resource under stress could conceivably also increase the 

incentive to cooperate, as a way to avoid greater combined losses.  

 

Cooperation, however, has been less in focus in quantitative studies of climate effects. For 

example, it was not a possible outcome in any of the studies surveyed in Hsiang et al. 

(2013). The reason for this might be difficulties in quantifying cooperation – conflicts and 

disputes can be more transparent and easily recorded. However, that does not mean that 

cooperation is less relevant. By disregarding one half of the spectrum of outcomes, one 

runs the risk of artificially truncating the outcome variables, possibly biasing the results. 

Cooperation has been explored somewhat more extensively, though, in an area where it is 

clearly more widespread than conflict (Wolf 2007): transboundary water resources. We 

will focus on such regions for this study of the link between climate, disputes, and 

cooperation.  

 

Several factors motivate the study of transboundary water resources as an arena for both 

disputes and cooperation. First, despite strong evidence of cooperation being much more 
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common than conflicts over water in the past (Wolf 2007), the notion of potential disputes 

over water in a changing climate remains persistent (Barnaby 2009). Second, 

transboundary river basins involve a physical resource that is both inherently cross-

boundary and clearly depends on climate, properties that are highly relevant to an 

investigation of climate effects on international disputes and cooperation. Third, a river 

acts as an integrator of the upstream climate, within a clearly defined geographical 

boundary, and therefore allows a measurable physical state at a point to be meaningfully 

compared to water-related social events within the basin as a whole.  

 

A number of studies of transboundary water resources have shown evidence of a link both 

between climate and cooperation, as well as between climate and disputes (Yoffe et al. 

2004; Stahl 2005; Hensel et al. 2006; Brochmann and Hensel 2009; Dinar et al. 2010; De 

Stefano et al. 2012). In contrast to the studies synthesized in Hsiang et al. (2013), water-

related conflicts have generally been non-violent in nature, and mostly take the form of 

disputes and disagreements, although there are also cases of military confrontation.  

 

The studies on transboundary water resources have contributed with a number of 

important insights, but recent synthesis and review studies have concluded that there is no 

consensus yet on mechanisms or effect sizes (Johnson et al. 2011; Link et al. 2016), 

particularly regarding the question of whether climate affects both disputes and 

cooperation in the same way. To address this question, a number of common limitations in 

earlier studies have to be overcome. 

 



 6 

First, although there are exceptions, the two outcomes of dispute and cooperation have 

generally been studied in isolation (Furlong et al. 2006; Hensel et al. 2006; Hamner 2009; 

Stinnett and Tir 2009; Brochmann and Hensel 2009; Dinar et al. 2010). Since climate can 

conceivably and simultaneously affect both cooperation and disputes, there is a motivation 

for allowing them both as possible outcomes in the same investigation. Importantly, this 

was not done in any of the high quality studies identified in the review by Johnson et al. 

(2011). There is therefore a motivation to conduct a joint study that allows comparison of 

effects on either outcome. 

 

Second, several studies only include observations for years when disputes or cooperation 

occurred, disregarding years when no such outcome was recorded (Yoffe et al. 2004; Stahl 

2005; Brochmann and Hensel 2009; De Stefano et al. 2012). This implies that variance in 

climate variables that takes place in years without disputes or cooperation will be 

disregarded in identification of the effect of climate on disputes and cooperation. Thus, the 

sample will be selected based on the outcome rather than including all years, even those 

where there was no evidence of disputes or cooperation. To avoid such problems, the no 

event years should also be included, which will let the outcome variable more accurately 

represent reality. 

 

Third, several studies have focused on static climate measures that remain constant over 

the period of investigation (Hensel et al. 2006; Stinnett and Tir 2009; Dinar et al. 2014). 

Although such measures may help in characterizing fundamental differences between 

basins, they clearly are not useful for capturing the substantial temporal variability in 
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climate and water availability (Devlin and Hendrix 2014), which is of greater interest when 

studying climate effects over time. In addition, they are also methodologically challenging, 

as it is very difficult to separate the climate effect from all other ways that basins may 

differ. 

 

Fourth, many studies (including all of the studies synthesized in Hsiang et al. 2013) assume 

effects on transboundary water dispute and cooperation to be strictly one-directional, i.e., 

that the probability of dispute or cooperation is either monotonically increasing or 

decreasing in climate variables (Hensel et al. 2006; Hamner 2009; Bernauer and Böhmelt 

2014). Although this is compatible with a traditional neo-Malthusian perspective, where 

resource scarcity is conceived as a driving force of conflicts, there are indications that at 

least for precipitation, conflict responses may be non-linear (Burke et al. 2015) and change 

sign. 

 

Although some studies have partly addressed these issues (Hensel et al. 2006; Hamner 

2009; Dinar et al. 2010; Hendrix and Salehyan 2012; Bernauer and Böhmelt 2014), we are 

aware of no study that overcomes all the limitations outlined above. Therefore, neither the 

relative importance of the effect of climate on the two outcomes, nor which variables that 

actually influence either outcome, has not been decisively established, even for 

transboundary waters. In this paper, we aim to overcome earlier limitations by studying 

potential outcomes that span the entire gamut of cooperation and conflict over 

transboundary waters, considering years with no events and with climate varying over 

time, and also allowing marginal effects to change sign through polynomial specifications. 
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In this way, we hope to contribute to a more complete understanding of the relation 

between climate, conflicts, disputes and cooperation. In the end, the relative importance of 

a climate effect on disputes and cooperation, and the climate variables through which such 

effects act, may have large consequences under future climate change.   

 

Materials and Methods 

 

Variables and data 

 

Defining an outcome as binary (e.g., cooperation or no cooperation) makes both estimation 

and interpretation easier technically, but truncating the outcome variable and disregarding 

parts of the spectrum can be misleading if climactic factors are associated with both 

disputes and cooperation. Here, to include events that span the range from conflict to 

cooperation, thus addressing the first limitation outlined above, we use data from the 

Transboundary Freshwater Disputes Database (TFDD; 

http://www.transboundarywaters.orst.edu/database/), which contains data on both sides 

of the spectrum.  This dataset has been compiled through research at the University of 

Oregon, and lists over 6400 water-related events between nations that share a river basin 

for the period 1948-2008. We choose to use the TFDD instead of two other datasets, the 

International Water Conflict and Cooperation dataset (IWCC; Kalbhenn and Bernauer 

2012) and the Water Conflict Chronology (WCC; Gleick and Heberger 2014), for several 

reasons. The IWCC, although substantially more detailed than the TFDD, has a significantly 

shorter temporal extent (1997-2007), and it is ultimately temporal variation with water 

http://www.transboundarywaters.orst.edu/database/
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basins that will allow us to identify the parameters of our models, a point also emphasized 

by Johnson et al. (2011). The WCC, although more up-to-date than the TFDD, does not 

include cooperation. Finally, the TFDD has been the basis for most studies previously 

investigating the relation between water disputes, cooperation and climate, which 

facilitates comparison with previous assessments.  

 

In the TFDD, all cooperative and dispute events are ordered, based on the degree of 

cooperation and dispute, on a scale from -7 to 7 (see Table A1 in the appendix). Thus, 

dispute and cooperation both have wide spectra, from verbal expressions of discord to 

armed conflicts, and from minor official exchanges to the signing of international fresh 

water treaties, respectively. For this study, we do not distinguish between grades of 

intensity in dispute or cooperation, and therefore collapse the scale; any outcome between 

0 and 7 is assigned a value of 1 and any outcome between -1 and -7 is assigned a value of -1 

(Table A1). The results are insensitive to whether we assign the 0 events to the positive or 

negative side of the spectrum. Although the collapsed scale contains effects of very 

different magnitude (e.g., declaration of war as compared to minor diplomatic remarks), 

the more extreme events are very rare (Table A1) and thus contain too little variation to 

estimate the effect across the entire range of outcomes.  Also, the original scale is already 

collapsed since each scale step contains different types of disputes and cooperation (Table 

A1). Further collapsing the scale implies that we reduce the ordering of events to only 

negative or positive events. Hence, we cannot make claims about the intensity of the effect, 

e.g., how much worse a dispute gets in the face of climate stress, but only claims about the 

probability of some type of cooperation or dispute occurring. We argue that this limitation 
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is acceptable, as our main purpose is to investigate effects on cooperation and dispute as 

overarching categories of responses. 

 

For a few basins and years, both positive and negative outcomes were occasionally 

observed in the same year. For those years, we determined an annual value based on the 

sign of the average outcome in the year. We then extended the dataset of positive (1) and 

negative (-1) events by assigning a value of 0 to all years where no event occurred, 

addressing the second limitation in the introduction, in order to obtain a balanced panel 

and not select observation based on years where an event actually occurred.  

 

To explain the annual dispute-cooperation responses in our modified TFDD dataset, we 

aggregate a suite of climate data into four explanatory variables over the same period. 

Principally, we expect river basin dispute or cooperation to be associated with water, and 

therefore define three variables pertaining to water availability: precipitation, soil 

moisture (as an indication of drought), and river discharge. We also include temperature, a 

common variable to use in climate and conflict studies, including half of the studies 

surveyed in Hsiang et al. (2013). Although we acknowledge that socio-economic factors 

such as income, trade, and institutions likely also influence outcomes, we do not introduce 

separate control variables for these factors, as they are often themselves a function of 

climate (Hsiang et al. 2013), and therefore might bias estimates of the actual climate effect. 

However, we introduce basin dummies that to some extent capture slow moving basin 

specific characteristics such as institutional quality. 
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Of the four variables, precipitation, soil moisture and temperature are clearly exogenous, 

while an effect of human intervention is possible for discharge. Thus, this variable, although 

clearly a direct physical measure of time-varying water availability, also risks introducing 

precisely the type of bad control described in the previous paragraph. Hence, we focus our 

analysis on the exogenous variables, and only investigate discharge at a later stage to see 

whether there is any association. We also discuss potential sources of bias and how the 

causal effect of this important variable could possibly be isolated.  
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Fig. 1 Transboundary basins used to investigate climate effects on cooperation and dispute. (a) The 83 basins 

highlighted in blue are a subset of the Transboundary Freshwater Disputes Database (TFDD) for which we 

assembled climate and water flow data. Hatched TFDD basins are excluded either on basis of not meeting a 

minimum size to allow climate data evaluation, or due to lack of reliable long-term discharge data. (b) 

Geographical characteristics of transboundary basins. Circle positions illustrate the average temperature and 

precipitation conditions in the 83 basins during our study period 1948-2004. Circle sizes denote basin 

populations, assembled from the Gridded Population of the World database for the year 2010 (Pozzi et al. 

2003), available at http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-count-future-estimates). 

Circle colors represent the long-term average soil moisture, expressed as the Palmer Drought Severity Index 

(PDSI), for the basin. Negative (positive) PDSI values represent dry (wet) conditions, with values below -3 

corresponding to severe drought. 

 

http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-count-future-estimates
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Our final dataset consists of observations between 1948-2008 on 83 basins that combined 

are home to about 2.5 billion people and span a wide range of climatic conditions (Figure 1; 

basin details in Table A2 in the appendix). Although this sample is limited in relation to the 

total number of transboundary basins (267 are defined in the TFDD), our sample contains 

the vast majority of the human population that resides in such basins (86% of the human 

population residing in TFDD basins is included in our sample). Therefore, even if the 83 

basins differ in some significant way from other basins, which would limit the external 

validity of our results, we consider the sample satisfactory to the study of international 

river basins from a societal point of view. 

 

 

Model 

 

Our panel data allow us to identify the effect of climate variables on our outcome variable 

using variance in variables within basins over time, rather than differences across basins 

(see Hsiang et al. (2013) and Carleton and Hsiang (2016) for extensive argumentation as to 

why this is important and how it addresses endogeneity problems). In short, we use basin 

fixed effects to control for the fact that basins that on average are more prone to, for 

example, drought, may have a higher probability in general for disputes or cooperation. 

This addresses the third shortcoming in the introduction, concerning static climate effects, 

and allows us to use deviations from the basin’s average soil moisture to identify an 

increased or decreased probability of dispute or cooperation from their respectively 

average probabilities. 
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As our data is ordinal, we formulate a generalized ordered logit model on the form
 

 (1) 

as our basic setup. Y*it is the latent variable that determines the outcome for each basin and 

year, which are indexed i and t respectively. CV is a vector of climate variables (1 year 

lagged values are included in our baseline specification), the different βs are coefficient 

vectors that are indexed c for each climate variable and o for each outcome. The latter 

implies that a separate set of parameters are estimated for each outcome, which allows the 

effect of a climate variable on the probability of a particular outcome to differ for, say, 

dispute and no event. B is a vector of basin fixed effects, T a vector of time fixed effects, and 

ε is an error term with a cumulative logistic distribution. We describe the model more in 

depth in the Appendix. 

 

We base our regression model on the assumption that a year with a large deviation from 

the average climate may constitute a stress on the basin. An important feature of the 

generalized ordinal logit model we use is that the proportional odds assumption is relaxed 

and we can, hence, estimate one set of coefficients for each category relative to our baseline 

outcome, which in our case will be cooperation. In other words, we allow for different 

coefficient estimates for each category. In our model, we address the fourth limitation 

about monotonically increasing or decreasing effects by testing the robustness of our 

results by adding a quadratic specification of climate variables. Thus, we do not strictly 

follow the traditional neo-Malthusian perspective of one-directional effects. Rather, our 
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expectation of potential causal mechamisms more closely resembles the “scarperation” 

idea of Dinar et al. (2007), whereby a U-shaped relationship is hypothesized. Although their 

model only refers to cooperation, we see no reason such non-linear effects should not be 

possible also for conflicts.  

 

We estimate the relationship between our climate variables and the outcome variable using 

the baseline specification described by Equation 1. To test the robustness, we estimate 

perturbations of our baseline model to account for various ways that timing of climate 

factors might drive outcomes. The first specification is estimated without the time fixed 

effects; the second specification includes them. In the third specification we test the model 

without lagged values of the climate variable, in the fourth specification we add an 

additional two-year lag of each climate variable. In the fifth specification we use a quadratic 

specification of each climate variable. In the sixth specification we add the endogenous 

variable discharge to see if it has any explanatory value for dispute or cooperative 

outcomes. 

 

Results and Discussion 

 

We present the results of our baseline specification in terms of estimated average partial 

effects in Table 1. The numbers should be interpreted as the marginal effect on the 

probability of an outcome, in percentage points (pp), due to a one unit increase in the 

climate variable (1 pp is equal to an absolute probability change of 1%; e.g., a change from 

5% to 6%). A unit increase in each variable corresponds to 100 mm/yr for precipitation, 1 
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°C for temperature, a shift in 1 of the Palmer Drought Severity Index for soil moisture, and 

100 m3/s for discharge. Columns 1, 2, and 3 in Table 1 represent the effects on conflict, 

status quo, and cooperation outcomes, respectively. In Table A3 in the appendix, we 

present the coefficients of the model for all specifications. The robustness test did not alter 

the results in any significant way, so from here on, we discuss results for the baseline 

specification. 

 

Table 1 The average partial effect of a unit change1 in each climate variable on the probability of conflict, status 

quo, and cooperation. Standard errors are listed in parentheses. Asterisks denote the level of significance for each 

variable and outcome combination: ***: p<0.01, **: p<0.05, *: p<0.1. Units are percentage points (pp; 1.0 

represents 100 pp), where 1 pp equals an absolute change of 1% in the probability of each outcome (e.g., from 

0.05 to 0.06, or 5% to 6%). 

 (1) (2) (3) 
VARIABLES Dispute No Event Cooperation 

    
Precipitation -0.0080** 0.0078 0.0002 
 (0.0040) (0.0056) (0.0045) 
Soil moisture 0.0009 -0.0071* 0.0061* 
 (0.0028) (0.0040) (0.0034) 
Temperature 0.0013 -0.0193*** 0.0180** 
 (0.0025) (0.0073) (0.0070) 
    
Observations 4,603 4,603 4,603 

1A unit increase in each variable corresponds to 100 mm/yr for precipitation, 1 °C for temperature, and a shift in 1 

of the Palmer Drought Severity Index for soil moisture. (see Table A2 with descriptive information). 

 

Our results indicate that for the conventional significance levels, a higher level of 

precipitation is associated with a lower probability of dispute, while the effect on 

cooperation is largely insignificant. Higher soil moisture is estimated to increase the 
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probability of cooperation, and the same holds true for higher temperature. Looking at the 

effects in detail, an increase in precipitation by 100 mm/yr is predicted to, on average, 

decrease the probability of conflict that year by 0.8 pp. A unit increase in the soil moisture 

index is predicted to decrease the probability of no event and increase the probability of 

cooperation by about 0.6-0.7 pp. An increase in temperature by 1 °C is predicted to 

decrease the probability of no event and increase the probability of cooperation by about 

1.8-1.9 pp. For comparison, the average probabilities of dispute, status quo, or cooperation 

across all basins in any given year are 3%, 80%, and 17%, respectively. Hence, the effects 

are substantial in relative terms. 

 

To show the relative size of the effects, we plot the predicted average probabilities of 

dispute, no event, and cooperation for our three exogenous climate variables precipitation, 

soil moisture, and temperature. We use Equation A4 in the Appendix and keep the 

variables that do not vary constant at their average values. Naturally, the variability for 

each climate variable differs substantially between basins. Hence, we calculated average 

maximum and average minimum of precipitation/soil moisture/temperature across basins, 

and plot the probabilities over these values. 

 

The generalized ordinal logit model is non-linear, and thus gives non-constant marginal 

effects. In Figure 2, we see that the relative effect of precipitation on the probability of 

dispute is quite large (a standard deviation in precipitation is 499 mm/yr).  Similarly, the 

effect of soil moisture on the probability of cooperation is relatively large, which is also the 

case for the effect of temperature on cooperation, but estimates are much more imprecise 
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for the latter effect. For clarity, these probabilities are estimated controlling for basin-

specific conditions. Hence, some basins with, for example, lower precipitation might have 

higher estimated probabilities of dispute than basins with more precipitation, but on 

average, the probability of dispute is estimated to decrease with higher precipitation levels.  



 

 

 

Fig. 2 Estimated average probabilities of dispute, no event, and cooperation, respectively, plotted over average maximum and minimum values of 

precipitation, soil moisture, and temperature. For all variables, we keep the other variables fixed at their average levels. Shaded areas correspond to 

95% confidence intervals.  



 

Clearly, the graphs show that our model estimates no correlation between precipitation 

and cooperative outcomes, and no correlation between soil moisture and temperature 

with disputes. While these results are robust, it is not clear what the exact mechanism 

is. We note, however, that the overall results are consistent with an often-suggested 

pathway between resource stress and more negative outcomes (Johnson et al. 2011), 

despite the complex patterns across outcomes and variables in our study. First, the 

significant effects for both water variables indicate that outcomes are better when more 

water is available (fewer disputes and more cooperation as consequences of 

precipitation and soil moisture increases, respectively). Similarly, although higher 

temperature could in general put stress on resources (Lobell and Field 2007; Burke et 

al. 2009; Salehyan and Hendrix 2014), the effect may instead be positive, as seen in our 

results, when controlling for water availability as we do (i.e., if high temperatures are 

associated with droughts, such effects are accounted for and not driving our results). 

For example, as long as temperatures stay below certain thresholds, yields of some of 

the most common crops increase with temperature, until certain thresholds are reached 

(Schlenker and Roberts 2009). Therefore, our results may reflect such positive resource 

effects of increasing temperature, as long as threshold values are rarely reached, or 

reached only for a small share of years and basins (the latter may in turn also contribute 

to the imprecise estimates for temperature).  

 

Alternatively, the positive effect of higher temperatures on cooperation may reflect 

other mechanisms, such as high temperatures acting as a signal of future climate change 

that in turn spurs cooperation efforts. As noted before, controlling for precipitation and 

soil moisture, temperature itself would then not affect water supply directly, while 
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lower precipitation and soil moisture would immediately affect productivity and hence 

decrease the probability of cooperation and increase the probability of dispute, 

respectively. Our data, however, is not detailed enough to explore the validity of any of 

the above-mentioned explanations. To investigate these potential mechanisms in detail, 

a much more detailed study would have to be undertaken, carefully designing variables 

to isolate the effect of climate variations through such intermediate pathways. Ideally, 

case studies could here be used to identify potential factors, whose influence can then 

be quantitatively estimated using large-N studies. We now turn to explore the relative 

size of the estimated effects and the heterogeneity of marginal effects across basins. 

 

Over time, the individual basin variations in precipitation, soil moisture, and 

temperature span a decisively smaller range than the values over which the 

probabilities are plotted in Figure 2. Hence, to facilitate the interpretation of the effect 

size, we can look at relative changes in probability, although it should be kept in mind 

that many basins have an estimated baseline probability of dispute that is virtually zero. 

For those basins, even an infinitesimal increase in the probability of dispute would lead 

to a very large relative increase. Therefore, we also investigate the effects – in relative 

terms only – of a more plausible, basin-specific standardized change in the following 

way: We use equation A4 in the SI to calculate the basin-specific estimated probability 

of dispute, cooperation, and status quo, conditional on individual basin-averages for 

each climate variable (year is set to 2004). We explore a change in conditions in line 

with predicted effects of global warming for many (but not all basins), a decrease in 

precipitation and soil moisture and an increase in temperature. We calculate basin-

specific standard deviations of precipitation, soil moisture, and temperature, and 

subtract and add these, respectively, from the basin-average values of the variables. 
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Using this calculated value, we predict a new estimated probability of each outcome 

while holding other values constant. In Table 2, we present the average relative change 

in probability of each outcome, due to the basin-specific one standard deviation change 

in each one of the climate variables. 

 

Table 2 Estimated relative change (in %) and absolute (in percentage points, pp) in outcome probabilities, due 

to a basin-specific decrease of one standard deviation in precipitation and soil moisture, and a standard 

deviation increase in temperature respectively averaged across all basins. 

  (1) (2) (3) 
VARIABLE  Dispute No Event Cooperation 

     
Precipitation      
1 sd decrease Relative 53.3% -0.4% -0.2% 
 Absolute 0.39pp -0.37pp -0.02pp 
Soil moisture     
1 sd decrease Relative -6.3% 1.9% -9.9% 
 Absolute -0.06pp 1.23pp -1.17pp 
Temperature     
1 sd increase Relative 4.1% -2.4% 13.6% 
 Absolute 0.04pp -1.56pp 1.52pp 

     
Average Probability  1% 82.2% 16.8% 
     

  

 

First, we note that the only associations that were significant at conventional 

significance levels were precipitation with dispute, and soil moisture and temperature 

with no event and cooperation. The non-significant relative effects can still be large, 

such as the effects of soil moisture and temperature on disputes, which are on the order 

of 4-6%. However, for these cases, the absolute effects (derived using our non-

statistically significant coefficients from Table 1) are very small: shifts in probabilities 
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equal to 4-6/100 of a percentage point hardly matter in practical terms, and the large 

relative effect sizes are in these cases due to the low baseline dispute probability.  

 

Table 2 presents the average effect across all basins. The marginal effects of a change in 

a climate variable differ across basins due to the non-linearity of the generalized ordinal 

logit model and due to each basin specific average climate values, as well as basin 

specific characteristics, that are captured by the basin fixed effects. Hence, rather than 

just looking at the average, it is also of some interest to look at the distribution of the 

effects across all individual basins. For the effects that are estimated to be statistically 

significant and substantial in absolute terms (precipitation on dispute; soil moisture 

and temperature on cooperation), Figure 3 shows the estimated kernel density of the 

estimated relative marginal effects of the standard deviation changes defined above, 

using individual estimates for all basins.  
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Figure 3. Kernel density of relative effect sizes of a) precipitation on disputes, b) soil moisture on 

cooperation, and c) temperature on cooperation. 

 

The distribution of the precipitation effect is right skewed, which again is due to the fact 

that a few basins have estimated probabilities of dispute that are almost zero, so minor 

absolute effects give rise to very large relative effects. However, the bulk of the effect of 

a one-standard deviation decrease in precipitation is an increase in dispute probability 

of between 0 and 100%. Although the marginal effect has a peak around 50%, there is 

substantial heterogeneity across basins. The marginal effects of soil moisture and 

temperature show the same type of heterogeneity. A basin-specific one standard 

deviation decrease in soil moisture is estimated to have a negative effect on the 

probability of cooperation of between 0 and 18%. Similarly, a basin-specific one 

standard deviation increase from the basin mean in temperature is predicted to 

increase the probability of cooperation by between 0 and 30%. 

 

Since these results were derived using basin specific standard deviations, we see that 

there is not only an overall statistical association between our climate variables and 

dispute and cooperation, but that effects are mostly of substantial size also across 

basins. There is, however, large heterogeneity in the marginal effects of each variable 

across our 83 basins. An increase in precipitation is on average related to a decrease in 

dispute probability, while cooperation probability increases both with wetter soils and 

warmer conditions.  

 

While the mechanisms are not entirely straightforward, our results are robust. In the 

appendix, we show the estimated coefficients across all our different specifications. If 
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we omit time fixed effects, or vary the number of lags between 0 and 2, we only see 

minor quantitative changes in coefficients, but no qualitative differences to our results. 

For precipitation, the quadratic term is significant, and when included also yields a 

significant association between precipitation and cooperation. However, when the 

quadratic specification is used to calculate average marginal effects, the point estimates 

stay close to our baseline specification. In our final specification, we added discharge as 

an explanatory variable, but found no statistically significant relationships between 

discharge and outcomes. The discharge variable is endogenous in the model, as 

discharge might also be an outcome of either conflict or cooperation, in addition to 

causing it firsthand. We will not dismiss the potential explanatory power of discharge, 

and in future research hope to develop methods to overcome the endogeneity problems 

by separating the anthropogenic – and therefore potentially endogeneous and dispute- 

or cooperation-caused – component of discharge from the background “pristine” 

discharge. In this way, we could build a model aimed at explaining cooperative and 

dispute outcomes by better understanding the factors determining discharge and how 

these vary across basins. 

 

Overall, although only significant for precipitation, our results support the conclusions 

in Hsiang et al. (2013) of a climate-dispute related link. The overall risk of disputes are 

low, but for a one-standard deviation decrease in precipitation, the risk of dispute is 

estimated to increase with between 0 and 100% across basins, with an average of about 

50%, or 0.39 percentage points. This is a substantial effect in relative terms, and 

significantly larger than the average effect size of 14% that was evident across the 

studies surveyed in Hsiang et al. (2013). In contrast to precipitation, soil moisture and 

temperature are primarily related to cooperation, with an increase in both variables 
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estimated to increase the probability of cooperation. Interestingly, these climate effects 

on cooperation are, in relative terms, of approximately the same magnitude (~10-14%) 

as the effects on conflict documented by Hsiang et al. (2013). However, in absolute 

terms, the cooperation probability changes due to a one-standard deviation change in 

soil moisture or temperature are more than twice as large as corresponding changes in 

conflict probability due to a one-standard deviation precipitation change (1.17-1.56 pp 

compared to 0.39 pp).  

 

Our results, which comprehensively consider both temporal and geographical variation, 

have thus demonstrated a complex pattern of effects. For the first time, we study 

concurrent and global responses of long-term variation in multiple climate variables on 

both disputes and cooperation. This design revealed that different components of the 

climate system are linked to positive and negative outcomes. Furthermore, despite our 

hypothesis that large deviations from basin averages should possibly incite disputes or 

spur cooperation, we find only very weak evidence for such responses. Instead, the 

effect is monotonically increasing or decreasing with change in the climate state, but 

our non-linear model nonetheless allows responses to vary in a more nuanced way than 

most earlier studies, also for the multiple-outcome design that we introduce here. 

 

Water and other environmental issues are potential entry points to wider cooperation, 

and may thus help mitigate conflict tendencies between nations (Najam 2013). 

Therefore, even when considering a large body of research indicating a tendency to 

cooperate over shared waters (Wolf 2007; Tir and Stinnett 2012), our results give some 

reason for concern when considering future expected changes to the climate. Although 

our estimates indicate that temperature increases have positive effects on cooperation 
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when controlling for water availability, global projections indicate substantial decreases 

in the latter (Collins et al. 2013). Over much of the mid-latitudes, including the 

Mediterranean, Middle East, and much of Central and South America and Southern 

Africa, precipitation is projected to decrease (Collins et al. 2013). For soil moisture, a 

substantial decrease is projected over the same regions, and in a high-emission 

scenarios also for much of Europe and North America (Collins et al. 2013). Therefore, 

irrespective of the mechanism, the positive effects of warming on cooperation may be 

offset by a concurrent drying, should dispute and cooperation responses to such 

variations behave similarly in the future as in the past. Likelihood estimates for such 

projections vary, however, and the uncertainty over a number of regions is very large. 

To provide more reliable estimates of future water availability, which is of critical 

importance to attempt any projection of climate-driven effects on conflict and 

cooperation, improvement in climate model land surface schemes should be a research 

priority (Bring et al. 2015; Jaramillo and Destouni 2015).  

 

We have studied effects on the scale of entire river basins, while in some cases, several 

countries with territory in the basin may not have been involved in the events we 

investigate. Therefore, our results pertain principally to effects of basin-wide climate 

signals. Future studies may yield more detail on how effects vary between country-pairs 

within basins, perhaps also using more precise delineations of transboundary basins 

(Beck et al. 2014). However, such investigations would also require more finely 

resolved climate data than is generally available for many basins.  

 

Conclusions 
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While cooperation over transboundary water resources is more common than disputes, 

our results indicate that climate has an effect on both outcomes, and that effects on 

cooperation are markedly stronger in terms of the absolute number of events, when 

considering a one-standard deviation in different climate variables. This result is not 

simply a consequence of our novel way of specifying the problem, where we use a single 

model to estimate several outcomes simultaneously, but is clearly significant in terms of 

magnitudes of the effect, and also in a statistical sense. The influence of climate on 

dispute probability is decreasing in absolute terms as precipitation increases. In 

contrast, the effect of climate on the probability of cooperation increases with wetter 

soil moisture conditions and increase in temperatures. Although our results strictly 

apply to past events, they still give some reason for concern about future conditions for 

transboundary water conflict and cooperation as precipitation and soil moisture are 

projected to decrease across much of the mid-latitudes. Conflicts over water are mostly 

non-violent in nature, in contrast to other climate-driven conflicts investigated 

previously (Hsiang et al. 2013), but a decrease in cooperation due to lower water 

availability may still worsen outcomes overall. 

 

We emphasize that no quantitative study, including ours, can aspire to exhaustively 

represent the interplay between climate, conflict and cooperation. A wide range of 

factors, pertaining to institutional, political and historical context, among other things, 

are also critical for understanding mechanisms of human cooperation and conflict, 

whether the issue at stake is transboundary water resources (Gleick 1998; Wolf 2007; 

Van der Zaag 2009; Islam and Susskind 2012) or water resources in general (Pederson 

et al. 2012; Grantham and Viers 2014; Böhmelt et al. 2014; Selby and Hoffmann 2014). 

To further advance our understanding of climatic influences on disputes and 
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cooperation, a mix of case studies and quantitative studies is required (Mobjörk et al. 

2010). Nevertheless, our quantitative study has revealed significant relationships 

between several variables that do play a role, and also provided an estimate of the 

average effect size as well as an indicator of the heterogeneity in effect sizes across 

basins, and these aspects remain important to consider in understanding the long-term 

impact of climate change on disputes and cooperation.  

 

Our findings underline the importance of considering a full spectrum of effects, and we 

conclude with a recommendation that cooperation should now be brought into a 

stronger focus of the quantitative climate and conflict research community. A first 

necessary step in that direction would be the assembly of relevant data sets that allow 

for concurrent estimations of cooperative outcomes together with conflict. In that way, 

further studies could shed light on whether a stronger link to cooperation prevails also 

across other aspects where climate has been linked to more violent conflicts. This might 

in turn put earlier conclusions about climate change and conflict in a more complete 

context of inter-state relations, acknowledging that such relations can be both 

confrontational and cooperative.  
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APPENDIX 

Supplementary Methods  

Outcome variable: Cooperation and conflict data 

To investigate the potential effect of climate on the cooperation-conflict continuum, we 

used the Transboundary Freshwater Disputes Database (TFDD), an extensive dataset 

that includes both cooperation and conflict events, to form our outcome variable. The 

TFDD is in continuing development at the Department of Geosciences, Oregon State 

University. The database includes water events “defined as instances of conflict and 

cooperation that occur within an international river basin, that involve the nations 

riparian to that basin, and that concern freshwater as a scarce or consumable resource 

(e.g., water quality, water quantity) or as a quantity to be managed (e.g., flooding or 

flood control, managing water levels for navigational purposes)” (Yoffe, 2001). All data 

in the TFDD are available freely online at http://www.transboundarywaters.orst.edu. 

Predictor variables: Climate data 

The climate data that we used as forcing variables consist both of global gridded 

datasets of precipitation, temperature and soil moisture (a measure of drought), which 

we extracted for all basins, and of discharge data, which were available at or near the 

outlets of river basins.  

For precipitation and temperature, we downloaded the Willmott and Matsuura v3.1 

dataset (available online at http://climate.geog.udel.edu/~climate/), and for soil 

moisture data, we used a Palmer Drought Severy Index (PSDI) dataset (Dai, 2011; Dai et 

al., 2004) available at http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html. These 

datasets provide monthly values for all land surface areas at 30 minutes’ spatial 

resolution, for the time periods 1900-2010 (Willmott Matsuura) and 1850-2012 (PDSI).  

The Willmott Matsuura dataset draws on a number of data sources of original 

precipitation and temperature measurements, with the total number of stations used 

for each point in time varying between 4,100 and 22,000 for precipitation and 1,600 

and 12,200 for temperature. Station values are estimated for a rectangular grid by 

means of a climatologically aided interpolation (Willmott and Robeson, 1995). The 

http://www.transboundarywaters.orst.edu/
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Willmott Matsuura precipitation data, together with similar observation-based datasets 

such as the Climate Research Unit (CRU) products from the University of East Anglia, 

have been identified as superior to precipitation estimates originating from satellite-

based or model-aided reanalysis data in several studies for various parts of the globe 

(Fekete et al., 2004; Pavelsky and Smith, 2006). 

The PDSI data estimates deviations in soil moisture through a physically based water 

balance model that has been used and shown to be accurate in a wide set of applications 

for various parts of the world (Dai, 2011). In the version we use, recent improvements 

to the PDSI have been included, such as a more sophisticated evapotranspiration 

scheme and a self-calibration approach that overcomes some limitations in the original 

United States-based development of the model. The PDSI is represented as a 

dimensionless quantity, with values varying between about -10 and 10. Negative values 

indicate dry conditions and positive values wet conditions, with values below -3 

corresponding to severe drought.  

To prepare for extraction of the gridded data for the TFDD basins, we converted the 

vector-format TFDD basins to grid format at the same 30” resolution as the input 

climate datasets, using the Data Management toolkit in ESRI ArcGIS v10.1. 

Subsequently, we removed all basins that consisted of 10 cells or less, in order to 

sample only basins where a reasonable number of climate data points were available 

for all years. This corresponded to minimum watershed areas ranging from ~10,000 

km2 at 70° latitude to ~31,000 km2 at the equator. 

Area-weighted average monthly values were then extracted for all basins and years in 

the TFDD dataset. This step was performed using UV-CDAT, an open-source climate 

data analysis platform developed by a consortium led by the Lawrence Livermore 

National Laboratory and available freely at http://uv-cdat.org. Data were then imported 

into Stata, and monthly averages were combined into annual average values.  

We also compiled a direct measure of water availability in our study basins from a 

global discharge dataset (Dai et al., 2009); henceforth referred to as the Q dataset, 

available online at http://www.cgd.ucar.edu/cas/catalog/surface/dai-runoff/). The Q 

dataset combines discharge observations reported from various national 

hydrometeorological agencies with a global macro-scale hydrological model to provide 
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harmonized and complete time series of monthly discharge values at the outlet of 925 

basins around the world for the time period 1948-2004. We manually inspected all 

stations in the Q dataset and identified 118 basins that coincided with basins also in the 

TFDD. 

For the Ganges-Brahmaputra and La Plata basins, the Q dataset listed two separate 

stations, whereas the TFDD treated them as single rivers. For these two basins, we used 

the sum of their two tributary rivers (Ganges and Brahmaputra rivers and Paraguay and 

Uruguay rivers, respectively) as the Q value.  

In general, the drainage areas of the stations in the Q dataset matched well with the 

areas of the basin polygons in the TFDD dataset (R2 = 0.97). For a small set of rivers, 

however, there was an appreciable size mismatch between the listed TFDD basin area 

and the basin area upstream of the discharge station available in the Q dataset. For the 

Benito/Ntem (TFDD code: BENT) river, we used Q station no 271, which is centrally 

located in the basin and drains an area of 18,200 km2, compared to the TFDD listed area 

of 45,000 km2. For the Jordan (JORD) river, we used Q station no 822, which drains the 

Yarmuk river of 5,920 km2, compared to the TFDD basin’s listed 34,000 km2. For the 

Tigris (TIGR) river, we used Q station number 57, which is located downstream in the 

Tigris basin, but is listed as draining only 134,000 km2, compared to the 789,000 km2 of 

the TFDD data. For the Tuloma (TULM) river we used station 526 in the Q dataset, 

which drains 3,780 km2 instead of the 26,000 listed in TFDD. For the Yalu (YALU) river, 

the Q station with number 338 drained 18,245 km2, compared to the 51,000 km2 listed 

in the TFDD. These differences could indicate divergence between the areas that the Q 

and TFDD data pertain to, but they could also reflect errors or inaccuracies in the listed 

contributing areas. We tested our regressions without these basins, and although 

coefficients changed slightly, neither the main results nor the conclusions were affected. 

Our forcing dataset was finalized by selecting all basins for which there were data 

available in both the Q dataset and the gridded datasets. The final number of basins in 

this set was 83, out of which 38 basins were at least 50 cells in size and 33 at least 100 

cells in size at 30” (0.5 degree) resolution. The sizes and number of cells at 30” 

resolution for all basins that we include are given in Table A2 in the appendix. 

The model 
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In our model, we allow for three different outcomes in every basin i in each year t 

(positive, status quo or negative). We represent the different outcomes using the 

variable Yit which takes on the value -1 if there is a negative outcome, 0 if nothing 

happens, and 1 if there is a positive outcome in basin i in year t on the TFDD BAR scale 

variable. We consider values of 0 in the original TFDD BAR dataset to be positive 

outcomes and assign them a value of 1, but our results are insensitive to whether we 

assign these outcomes to the positive or negative side of the spectrum. To quantify the 

relationship between our outcome variable and climate variables, we specify an ordered 

logit model (Woolridge, 2002). What we observe is the discrete outcome variable Yit. 

The actual outcome depends on the unobserved continuous latent variable Y*it. The 

relationship between Yit and Y*it is defined by the following rules. 
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Where τcon and τcoop are cutoffs for conflict and cooperation respectively. We define Y*it 

to be a random variable:  

itiitit tgBCVfY  )()(*  

Here, i and t indexes basin and year respectively, CV is a vector of climate variables, B a 

vector of basin fixed effects, g(t) is a function of time possibly including both time fixed 

effects and a flexible time trend function, and ε is an error term with a cumulative 

logistic distribution. This gives us the ordered logit model, which we can use to estimate 

the relationship between changes in the climate variables and all three different 

outcomes. We use an ordered logit model rather than treating the outcomes as points 

on a cardinal scale because we want to acknowledge that we do not know the distance 

between -1 and 0 and 0 and 1. Using the ordered logit, we assume that these are points 

on an ordinal scale where only the ordering of the outcomes matter and not the numeric 

distance between them. 

Our specification of the latent variable used in our ordered logit model is 

(A1) 

(A2) 
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where the betas are coefficients and T are time fixed effects. We then define the 

predicted value of Y*it to be zit. Once estimated, the regression coefficients can then be 

used together with the estimated cutoff points to get conditional predicted probabilities 

for the three different outcomes. 
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We allow for within-basin correlation of the error terms by clustering the standard 

errors on a basin level. We estimate a general ordered logit model and relax the parallel 

odds assumption for the fixed effects by using the gologit2 routine in Stata (Williams, 

2006). The ordered logit is a non-linear model so the marginal effects on the predicted 

probabilities depend on the values of all the independent variables, in particular the 

fixed effects. For example, basins that have had very few instances of cooperation or 

conflict might have marginal effects of changes in climate variables that are close to 

zero.  
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Table A1.  Outcome variable. 

 
Event description BAR 

scale 
BAR 
events 

New 
Classification 

New 
Events 

Formal declaration of war -7 4   

Extensive war acts -6 31   

Small scale military acts -5 43   

Political-military hostile actions -4 18 -1 138 

Diplomatic-economic hostile actions -3 121   

Strong verbal expression of hostility -2 363   

Mild verbal expression of discord -1 721   

     

Status quo N/A N/A 0 8,373 

     

Neutral or non-significant acts 0 273   

Minor official exchanges 1 1889   

Official verbal support of goals 2 907   

Cultural or scientific agreement or support 3 738 1 685 

Economic technological or industrial agreement 4 1149   

Military economic or strategic support 5 41   

International freshwater treaty 6 507   

Voluntary unification into one nation 7 0   

 
The original BAR scale used in the TFDD dataset, along with our amended classification for this study. Note that the amended data 

includes a smaller set of basins than the TFDD dataset  
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Table A2. List of included basins. 

 

TFDD 
basin 
code Full name 

Average 
annual 
temperature 
(°C) 

Average 
annual 
precipitation 
(mm yr-1) 

Average 
annual 
PDSI 
value 

Average 
annual 
discharge 
(m3 s-1) 

Drainage 
area (km2 
× 1,000)* 

Number of 
cells at 30’ 
resolution 

Population 
(millions) 

AMUR Amur -1.13 537 -0.41 9799 2093 1043 65.4 

AMZN Amazon 24.59 2398 -0.12 172655 5857 1924 30.9 

ASIX Asi (Orontes) 14.43 886 -0.47 29 38 14 5.5 

BAKR Baker 9.06 1254 -0.85 861 31 16 <0.1 

BENT Benito/Ntem 23.84 3166 -1.18 271 45 14 0.7 

CLDO Colorado 11.94 504 0.10 395 655 268 9.0 

CLMB Columbia 5.81 895 0.35 5291 670 310 7.5 

CNGO Congo/Zaire 23.65 1648 -0.29 40402 3675 1200 90.2 

CROS Cross 26.29 2570 -0.62 556 52 17 10.9 

CRTY 
Courantyne 
(Corantijn) 

26.49 2122 -0.32 1078 42 15 0.1 

DANU Danube 8.78 840 -0.53 6472 792 371 79.1 

DNPR Dnieper 7.01 639 -0.26 1449 518 273 29.1 

DNSR Dniester 7.78 698 -0.22 316 62 29 6.0 

DONX Don 7.14 544 0.14 693 427 211 18.5 

DUGV Daugava 5.11 717 -0.07 467 59 32 1.6 

DURO Douro (Duero) 11.65 894 -0.26 590 99 43 3.9 

EBRO Ebro 11.61 684 -0.57 416 86 36 2.8 

ELBE Elbe 7.90 777 -0.26 690 133 69 21.5 

ESQB Essequibo 25.05 2261 0.03 2166 238 78 0.8 

FRSR Fraser 2.22 1016 -0.15 2779 241 129 1.2 

GAMB Gambia 27.46 1239 -0.97 171 70 21 1.6 

GANG 
Ganges-Brahma-
putra-Meghna 

18.75 1806 -0.08 32356 1629 598 666.5 

GJLV Grijalva 22.62 2357 0.15 531 126 43 8.3 

GLAM Glama 1.43 873 -0.13 678 43 26 0.7 

GRON Garonne 11.10 856 -0.69 563 56 25 3.8 

GUDN Guadiana 15.52 704 -0.12 156 68 27 1.5 

HANX Han 9.84 1179 -0.34 482 35 15 21.5 

HSIX Hsi (Bei Jiang) 19.13 1496 -0.28 1339 417 149 93.2 

ICMT Incomati 19.18 1033 -0.88 66 47 15 2.0 

INDU Indus 17.44 887 -0.37 2548 1138 425 264.8 

IRWD Irrawaddy 22.33 3041 -0.40 8675 401 137 37.2 

JORD Jordan 18.97 342 0.21 8 34 12 8.1 

JUBA Juba-Shibeli 25.13 582 -0.24 192 800 261 19.5 

KEMI Kemi -0.14 1253 0.62 567 56 48 0.1 

KMOE Komoe 26.86 1425 -0.71 180 78 24 2.3 

KRLV Klaralven 5.06 837 0.24 527 51 33 1.2 

LMPO Limpopo 20.61 642 -0.62 127 414 149 15.4 

LPTA La Plata 20.76 1312 0.12 22111 2947 1051 66.7 

MEKO Mekong 21.75 1610 0.14 9930 785 264 63.8 

MISS Mississippi 10.62 934 0.21 17473 3230 1376 77.1 

MPUT Maputo 17.24 1061 -0.80 72 31 12 1.3 

MRNI Maroni 25.78 2483 -0.47 1660 65 21 <0.1 

MRSA Maritsa 10.53 721 -1.00 109 50 20 3.1 
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NELS 
Nelson-
Saskatchewan 

1.87 567 -0.57 2206 1113 582 6.1 

NGER Niger 27.52 858 -0.61 5760 2105 715 99.4 

NILE Nile 25.33 725 -0.48 558 3020 1011 184.1 

NRVA Narva 4.75 687 0.04 379 53 35 0.9 

OBXX Ob -0.09 510 0.12 12777 2964 1751 30.7 

ODER Oder (Odra) 8.05 791 -0.53 523 123 62 16.5 

OGOO Ogooue 23.94 3457 -0.30 4693 222 73 0.8 

ORAN Orange 18.18 355 -0.62 193 944 340 13.2 

ORIN Orinoco 24.50 2333 0.62 31813 923 308 14.1 

OUEM Oueme 26.68 1277 -0.30 178 59 19 6.0 

PANG Pangani 21.05 679 -0.41 27 49 16 2.9 

POXX Po 9.22 1193 -0.42 1513 87 40 17.7 

PSVK Pasvik -1.30 509 0.33 157 16 14 <0.1 

PUNG Pungoe 22.48 1704 -0.22 117 30 10 1.0 

RGNA 
Rio Grande (North 
America) 

15.93 619 0.26 28 655 247 13.2 

RHIN Rhine 8.27 1051 -0.15 2243 173 89 53.1 

RHON Rhone 9.11 1026 -0.50 1701 100 46 10.3 

SABI Sabi 21.56 755 -0.73 273 115 40 3.6 

SANA Sanaga 23.52 1955 -1.40 1979 133 42 5.1 

SEIN Seine 10.16 837 -0.46 341 86 41 16.6 

SENG Senegal 28.46 710 -0.91 706 435 146 6.4 

SEPK Sepik 23.12 3106 0.04 3834 73 23 1.1 

SJNA 
St. John (North 
America) 

4.08 1168 -0.14 981 48 23 0.4 

SJUA San Juan 25.12 2489 -0.01 398 42 11 3.5 

SLAW St. Lawrence 5.70 990 0.02 7288 1058 485 48.6 

STKN Stikine -1.84 1161 0.25 1636 51 32 <0.1 

TAGU Tagus (Tejo) 14.75 864 -0.20 296 78 32 9.5 

TAKU Taku -1.68 1587 0.51 392 18 11 <0.1 

TANA Tana -2.21 522 0.41 170 16 15 <0.1 

TIGR 
Tigris-Euphrates 
(Shatt al Arab) 

18.49 563 -0.35 1073 789 314 63.9 

THUK Tugela 15.09 1047 -0.77 86 33 11 2.3 

TULM Tuloma -1.23 616 0.54 46 26 24 0.2 

VOLT Volta 27.40 1147 -0.87 1057 411 134 24.0 

VSTL Vistula (Wista) 7.50 735 -0.75 1047 195 100 23.1 

VUKS Vuoksa 2.58 737 0.31 590 63 48 0.7 

YALU Yalu 4.44 884 -1.16 155 51 22 5.4 

YAQU Yaqui 19.12 942 0.13 78 75 27 0.7 

YNSY Yenisey -5.24 525 -0.11 18473 2571 1588 7.9 

YUKN Yukon -5.82 593 -0.27 6374 835 624 0.1 

ZAMB Zambezi 21.58 992 -0.66 3157 1380 464 38.2 

Standard deviation 9.60 707 0.43 19876 1023 413 81.1 

*Drainage area calculated in ESRI ArcGIS from polygon outlines in the TFDD spatial dataset.  

  



Table A3: Details of specifications. 

 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 Dispute Cooperation Dispute Cooperation Dispute Cooperation Dispute Cooperation Dispute Cooperation Dispute Cooperation 

             

Precipitation 3.591** -0.448 3.925** 0.0212 6.064*** -0.0904 4.097*** 0.219 6.693*** -1.617 4.040*** -0.0838 

 (1.621) (0.586) (1.553) (0.616) (1.969) (0.586) (1.477) (0.625) (2.289) (1.105) (1.561) (0.628) 

Discharge -0.0378 0.0860* -0.0456 0.0844* -0.0949 0.0237 -0.0393 0.0712 -0.0174 0.118** -0.0512 0.0816 

 (0.133) (0.0496) (0.135) (0.0484) (0.128) (0.0438) (0.139) (0.0519) (0.133) (0.0496) (0.138) (0.0503) 

Temperature 0.0233 0.315*** -0.0664 0.245** 0.00383 0.164** -0.133 0.254** -0.214 0.333*** -0.660 0.247** 

 (0.129) (0.0960) (0.120) (0.0979) (0.0951) (0.0830) (0.138) (0.105) (0.235) (0.128) (0.121) (0.0978) 

Precipitation2         -1.854*** 0.768**   

         (0.719) (0.391)   

Drought2         0.0179 0.0213   

         (0.0388) (0.0134)   

Temperature2         0.00649 -0.00308   

         (0.00737) (0.00556)   

Discharge           0.0038 0.0029 

           (0.004) (0.0023) 

Constant -0.697 -5.675** 4.832 -0.336 1.417 -3.894** 4.719 -0.404 5.372 -0.0395 4.656 -0.459 

 (2.910) (2.878) (3.038) (2.893) (2.062) (1.898) (3.652) (3.637) (3.485) (2.990) (3.056) (2.949) 

             

Observations 4,603 4,603 4,603 4,603 4,603 4,603 4,520 4,520 4,603 4,603 4,603 4,603 

Time Fixed 

Effects 

No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Number of 

Lags 

1 1 1 1 0 0 2 2 1 1 1 1 

Quadratic 

Terms 

No No No No No No No No Yes Yes No No 

Standard errors clustered on the basin level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Baseline outcome is cooperation. Odd (even) numbered columns 

show coefficients associated with dispute (cooperation). Columns 1 and 2 show estimate of specification A3 with no time fixed effects. Column 3 and 4 are our 

baseline specification. Columns 5 and 6 have no lags of climate variables while columns 7 and 8 have two. Column 9 and 10 show a quadratic specification while 

columns 11 and 12 show the result when discharge is added. 

 
 


