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I. Introduction 

 

 Motor vehicle accidents continue to result in large numbers of fatalities each year.  

In 2006, for example, there were over 42,700 fatalities associated with these accidents.
1
   

As such, the determinants of these accidents and methods to reduce them continue to be 

of great interest to economists, public health officials, and policy makers. 

 To date, numerous studies have been conducted to attempt to determine the 

causes of motor vehicle accidents.  The factors leading to such accidents are attributed 

generally to the vehicles themselves, the roadways, or to drivers.  More specifically, the 

studies have examined the effects of speed limits, types of highways, vehicle speed, 

speed variance, motor vehicle inspection, seat belt laws, minimum legal drinking age, 

alcohol consumption, income, population characteristics, among many others.  Just 

recently, some studies have directed their attention to the impact of cell phones on motor 

vehicle accidents and fatalities.  Cell phones have become an issue in the literature given 

the growth of their widespread use in the general public and by drivers as well.  The 

effects of these factors do not necessarily remain static over time which compounds the 

difficulty of evaluating the marginal impact of them on fatality rates.
2
 

 Fragile and inconsistent results across studies may be due to different data sets 

(either survey or non-survey data), different estimation techniques used, e.g., cross-over 

analysis versus logistic analysis or OLS, as well as differences in the general model 

specifications.  We present in this paper econometric models using a rich set of panel data 

covering the period 1980 to 2005 by state and the District of Columbia. In addition, the 

panel data set allows for measurement of changes in federal speed limit laws which have 

changed in 1987 and again in 1995. 

Modeling the determinants of motor vehicle fatality rates is done several ways in 

this study.  First, a linear model is developed using classical linear regression modeling 

techniques based on the work of Loeb et al. (forthcoming).  This classically specified 

model serves as the reference prior of the research.  We recognize that classical linear 

modeling, which relies on a known and well-behaved sampling distribution, may be 

                                                 
1
 See NHTSA (2008). 

2
 See, for example, Keeler, who estimated that motor vehicle inspection had a life-saving effect initially, 

but its effect diminished over time. 
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prone to error due to fundamental uncertainty regarding model specification.   In this 

paper we then address issues related to both parameter and to model uncertainty via three 

Bayesian techniques.   

In what follows, Section II.A develops an econometric reference model to 

articulate the anticipated effects of explanatory variables on traffic fatalities.  In a 

Bayesian context, this serves to reference prior beliefs regarding the effects of variables. 

Section II. B describes the data and defines the variables used in this paper.  Section III.A 

estimates this model using a classical fixed effects regression.  Section III.B explores 

global model fragility using Extreme Bounds Analysis. Sections III.C and III.D present 

results from Bayesian Model Average and Stochastic Search Variable Selection 

procedures which direct attention to the most probable models.  Section III. E compares 

the four estimation approaches.  Section IV. provides some concluding comments 

including highlights on how the classical and Bayesian methods agree and differ across 

model specifications and suggests ways these data may be further examined. 

 

II. A. The Reference Prior 

 

Econometric models of the determinants of motor vehicle accidents often follow 

the approach suggested by Peltzman (1975).  One of the important contributions of 

Peltzman was to examine potential offsetting behavior on the part of drivers as they 

adjust their driving behavior in the face of improved safety of vehicles over time and the 

imposition of safety regulations.  For example, in the 1980’s seatbelt laws were being 

passed in the U.S. to reduce fatalities and injuries of occupants of cars involved in 

accidents.  However, although there may be a benefit to the seatbelt user should there be 

an accident, the probability of an accident may be increased as drivers take on riskier 

driving behavior which may, among other things, put pedestrians at greater risk.   

Peltzman’s paper initiated numerous studies on the determinants of automobile 

accidents using various econometric techniques and data sets. There were many studies 

on the effect of motor vehicle inspection on automobile accidents
3
, the effect of speed 

                                                 
3
 See, for example, Keeler (1994), Loeb (1985, 1990), Loeb and Gilad (1984), and Garbacz and Kelly 

(1987). 
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and speed variance on such accidents
4
, the effect of seatbelts and seatbelt laws on 

accidents
5
, the effect of alcohol and related taxing policies on accidents

6
, among other 

factors which might have countervailing effects.  Loeb, Talley, and Zlatoper (1994) 

review and evaluate the impact of many of these potential determinants of accidents.  

Until recently, however, most studies did not consider the impact of cell phones on motor 

vehicle accidents since cell phone use in the United States became relevant, from a 

practical point of view, starting in the 1980s.  There were only about 340 thousand cell 

phone subscribers in the United States in 1985.  Since then, the number of subscribers of 

cell phones has grown exponentially.  By the year 2007, there were over 255 million 

subscribers.
7
  Given this fast and large increase in cellular phone subscribership, 

economists, safety experts, and policy makers have recently increased their attention to 

the effect cell phones may have on motor vehicle accident rates. 

 Cell phone use by drivers may result in an increase in accidents and fatalities for 

several reasons.  Firstly, cell phone usage may have a distracting effect on the driver (as 

well as pedestrians) and may impede a driver’s ability to operate a vehicle due to an 

inability to do more than one thing at a time, i.e., drive a car and talk on a cell phone.  In 

addition, cell phone use may reduce attention spans and reaction times.  With this in 

mind, five states (Connecticut, New Jersey, California, New York, and Washington) 

along with the District of Columbia have banned the use of hand-held phones by drivers.
8
 

Strangely, the bans do not affect the use of hands-free devices in spite of research 

indicating that such devices have a similar adverse effect on safety as do the hand-held 

devices.
9
   

It is not merely the sheer number of cell phones available to the public which has 

safety researchers concerned, but also the propensity of drivers to use them. Glassbrenner 

(2005) has estimated that ten percent of all drivers at any moment of time during daylight 

hours were using either hand-held or hands-free phones.  Furthermore, there is indication 

                                                 
4
 See, for example, Lave (1985), Levy and Asch (1989), Fowles and Loeb (1989), among others. 

5
 See, for example, Cohen and Einav (2003), Evans (1996), Dee (1998), and Loeb (1993,1995,2001). 

6
 See, for example, Fowles and Loeb (1989), and Chaloupka et al. (1993). 

7
 See Cellular Telecommunications and Internet Association (2007). 

8
 In addition, both New Jersey and California banned text messaging by drivers in 2008. 

9
 See, for example, Consiglio et al. (2003). 
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that the percentage of drivers using these devices is increasing over time as well.
10

   Not 

only are cell phones and subscribers increasing over time, but driver usage is increasing 

as well and apparently at an increasing rate. 

Redelmeier and Tibshirani (1997) is the most well-known study of the effects of 

cell phones on automobile accidents.  Using cross-over analysis, they conclude that 

property-only accidents increase four-fold when cell phones are involved.  They also find 

that 39% of all drivers involved in these accidents make use of their cell phones to call 

for assistance after the accident.  McEvoy et al. (2005) also find an increase in the risk of 

an accident due to cell phones using data on crashes resulting in hospital visits.  Violanti 

(1998) attributes an approximate nine-fold increase in fatalities when cell phones are in 

use as opposed to when they are not.
11

  Neyens and Boyle (2007) examining teenage 

drivers, found that cell phones increased the likelihood of rear-end collisions relative to 

fixed-object collisions. From a different perspective, Consiglio et al. (2003), using a 

laboratory environment, simulated driving conditions and found that brake reaction time 

was reduced when cell phones were in use and this reduction occurred regardless of 

whether the cell phones were hand-held or hands-free devices.  Similarly, Beede and 

Kaas (2006) using a sample of 36 college students and simulating driving conditions in a 

laboratory environment also found that hands-free devices adversely effected driving 

performance. 

 As noted above, not all research has supported the claim that cell phones are 

associated with accidents and fatalities.  Rather, there are studies indicating that cell 

phones do not have a significant impact on motor vehicle accidents.  Laberge-Nadeau et 

al. (2003) using logistic-normal regression models and Canadian survey data initially 

found an association between cell phone use and accidents.  However, this risk was 

diminished as their basic models were extended, suggesting that their results were fragile 

with respect to model specification.  This suggests that results from modeling may be 

questioned due to issues of both model and parameter uncertainty.  The life-taking effect 

of cell phones was further countered by Chapman and Schofield (1998) who argue that 

cell phones should be credited with saving lives as opposed to taking them. Chapman and 

                                                 
10

 Glassbrenner (2005) has estimated that driver use of just hand-held phones increased from 5% in 2004 to 

6% in 2005. 
11

 See Violanti (1998, p. 522). 
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Schofield found that, “Over one in eight current mobile phone users have used their 

phones to report a road accident.”
12

  Referring to the “golden hour,” – the period of time 

crucial for survivorship from various medical emergencies and accidents – they claim 

that it is highly likely that many lives were saved due to cell phones.
13

  Similarly, Poysti, 

et al. (2005) claim that, “phone-related accidents have not increased in line with the 

growth of the mobile phone industry.”
14

   

More recently, Loeb et al. (forthcoming) addresses the fragile results reported 

across the various research endeavors by using econometric methods and specification 

error tests to examine the potential interacting-effect of life-saving and life-taking 

attributes of cell phones with regard to motor vehicle fatalities.  A non-linear model is 

posited and the statistical results suggest a non-monotonic relationship between cell 

phone availability and motor vehicle fatalities.  Initially, with low cell phone subscriber 

rates, cell phones are found to be associated with net life-taking effects.  As the number 

of subscribers increase, the life-saving effect overwhelms the life-taking effect.  This life-

saving effect may be due to sufficient numbers of cell phones being available so that a 

quick response to an accident by witnesses is likely and their expeditious call for medical 

help avails the victims to the benefit of the golden hour rule.  Starting in the 1990s, 

however, when subscribers numbered 100 million and more, the life-taking effect 

overwhelmed the life-saving effect once again.
15

  These results were found to be 

statistically significant and stable.  The results are considered reliable given the outcome 

of the specification error tests which paid particular attention to the structural form of the 

models.
16

  

 

                                                 
12

 See Chapman and Schofield (1998, p. 5). 
13

 See Chapman and Schofield (1998, p. 6).  
14

 See Poysti (2005, p. 50). 
15

 These results allow for not only driver usage of cell phones  to impact on automobile related fatalities, 

but for a potential beneficial externality  associated with the general population having cell phones.  Usage 

by both drivers and the general public may offset or more than offset each other with regard to safety 

effects. 
16

 The models presented by Loeb et al. (forthcoming) were evaluated for their conformity to the Full Ideal 

Conditions associated with the error term, i.e., µ~N(0,σ2
I).  To examine this, a set of specification error 

tests were applied to the models, i.e., the Regression Specification Error Test (RESET), the Jarque-Bera 

Test, and the Durbin-Watson Test.  Rejection of the null hypothesis of no specification errors by one or 

more of these tests resulted in the elimination of the models from consideration.  These results were 

supported as well by Fowles et al. (2008) using Bayesian Extreme Bounds Analysis. 



 8 

II. B. The Data 

In order to better understand the effects of socio-economic and policy related 

variables on traffic fatality rates we utilize a newly compiled, rich set of data that were 

collected on 50 states and Washington, D.C. over the period from 1980 to 2005.   

The choice of the measure of the dependent variable was of prime importance. 

Data are available on the number of fatalities, and on four different fatality rates.  Here 

we examine the most commonly reported dependent variable, fatalities per 100 million 

vehicle miles traveled.
17

 During our coverage period there were significant changes in a 

host of variables.  Our data cover the time of the explosive growth in cell phone 

subscriptions from effectively zero to over 270 million.  Because annual subscription data 

are only available at the national level we imputed state level subscriptions to be 

proportional to state population proportions for each year.  Another major variable 

change related to Federal legislation that allowed states to modify the 55 mile per hour 

speed limit on Interstate highways.  Our data records the highest posted urban Interstate 

speed limit that was in effect during the year for each state.  Within the data, per se blood 

alcohol concentration (BAC) laws vary widely, even though by 2005 all states and the 

District of Columbia had mandated a .08 BAC illegal per se law.
18

 Seat belt legislation 

varies widely across states.  Our data records the years in which a state mandatory 

primary or secondary seat belt law came into effect. The data are organized by 

geographical coding of states into eleven regions.   The variables are defined and 

described in Table 1 along with their expected effects (priors) on fatality rates.    

                                                 
17

 The other fatality rate measures are fatalities per capita, fatalities per vehicle registrations, and fatalities 

per licensed drivers.  All measures exhibit, at the national level, a downward trend.   
18

 The per se law refers to legislation that makes it illegal to drive a vehicle at a blood alcohol level at or 

above the specified BAC level.  BAC is measured in grams per deciliter.   



 9 

 

Table 1 

Explanatory Variables 
a
 

Cross Sectional - Time Series Analysis of Traffic Fatality Rates 

For 50 States and DC from 1980 to 2005 

 

Name Description Expected 

Sign 

(Priors) 

YEAR Year - 

PERSELAW Dummy variable indicating the existence of a law defining 

intoxication of a driver in terms of Blood Alcohol 

Concentration (BAC).  PERSELAW=1 indicates the 

existence of such a law and PERSELAW=0 indicates the 

absence of such a law. (More precisely, PERSELAW = 1 

when the BAC indicating driving under the influence is 0.1 or 

lower.) 

- 

INSPECT Indicator for annual safety inspection - 

SPEED Maximum posted speed limit, urban highways + 

BELT Indictor for presence of a legislated seat belt law - 

BEER Per capita beer consumption (in gal) + 

MLDA Minimum legal drinking age - 

YOUNG Percentage of males (16-24) relative to population of age 16 

and over 

+ 

CELLPOP Imputed number of cell phone subscribers per capita
 

+ 

POVERTY Poverty rate + 

UNEMPLOY Unemployment rate - 

REALINC Real per household income in 2000 dollars ? 

ED_HS Percent of persons with high school diploma - 

ED_COL Percent of persons with a college degree - 

CRIME Crime rate ? 

SUICIDE Suicide rate ? 
a
 For data sources, see Appendix 1 

 

III. A. The Classical Fixed Effects Model 

 

We begin by specifying a linear relationship between the fatality rate – FATAL – 

(vehicle fatalities per 100 million miles traveled) for the j
th

 state and for the i
th

 year.  The 

base model is estimated using regional dummy variables and includes the year as a trend 

variable. Ordinary least squares results for the basic model are presented in Table 2.  In 

order to compare the effects of the variables on fatality rates among estimation methods, 
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all data are standardized to have mean zero and range 1.  As mentioned, the regression 

included regional dummy variables, but those estimated coefficients are omitted from the 

table.
19

   

Table 2 

OLS Estimates for the Fatality Rate Model* 

 

Variable Estimate 

Standard 

Error t value 

YEAR -.466 .0334 -13.961 

PERSELAW -.0331 .00697 -4.754 

INSPECT .00775 .00544 1.425 

SPEED .0333 .011 3.023 

BELT .000318 .00753 0.042 

BEER .0935 .0163 5.752 

MLDA .0104 .00903 1.148 

YOUNG .0619 .0197 3.133 

CELLPOP .196 .0225 8.731 

POVERTY .175 .0211 8.321 

UNEMPLOY -.0561 .0232 -2.414 

REALINC .154 .0384 4.01 

ED_HS -.0361 .0283 -1.274 

ED_COL -.269 .0311 -8.632 

CRIME -.0000337 .0231 -0.001 

SUICIDE .127 .0286 4.439 
* Residual standard error: 0.06843 on 1300 degrees of freedom   

   Multiple R-squared: 0.807,      Adjusted R-squared: 0.8031  

   F-statistic: 209.1 on 26 and 1300 DF,  p-value: < 2.2e-16 

 

There is considerable sign agreement in terms of expected and estimated effects. 

Three variables are estimated with sign differences -- INSPECT, BELT, and MLDA.   

Classical estimation addresses the issue of parameter uncertainty and statistical 

significance in relation to the sampling distribution induced by assumptions in the linear 

regression model.  It may be noted that the three variables estimated with the “wrong” 

sign are not statistically significant at conventional testing levels.   Instead of changing 

the model specification by adding or removing variables (and thus violating the principle 

                                                 
19

 We selected the model presented in this paper for expository clarity.  Additional models were estimated 

which exclude some of the regressors presented and include others, such as what is referred to as a 

“companion variable.”  Companion variables attempt to account for factors not addressed by the time trend 

and are discussed in Loeb (1995, 2001).  In this case, both the crime rate and suicide rate may serve as 

companion variables.  Alternatively, the suicide rate may proxy to some extent the self-evaluation of the 

value of life. Regardless, results remain stable and similar to those reported in Table 2 and these additional 

models are available from the authors. 
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of statistical significance testing), we directly address model and parameter uncertainty 

using three Bayesian econometric methods.   They are Extreme Bounds Analysis (EBA), 

Bayesian Model Averaging (BMA), and Stochastic Search Variable Selection (SSVS).   

All three of the methods recognize that differing parameter estimates can be obtained 

under varying specifications, in particular, when subsets of the 2
K
 regressions (with K 

potential explanatory variables) are considered. The next sections examine the extent to 

which changes in model specifications lead to different conclusions regarding the 

influences of particular explanatory variables, and to discover classes of model 

specifications that have high posterior probabilities.  Given that 2
K
 is in the order of 250 

million for these data, specification is non-trivial and yet is mathematically tractable for 

these procedures.   

  

III. B.  Extreme Bounds Analysis 

 

Extreme Bounds Analysis was developed by Leamer in a series of articles 

beginning in 1978 (Leamer 1978, 1982, 1983, 1985, 1997).  It is a methodology of global 

sensitivity analysis that computes the maximum and minimum values for Bayesian 

posterior means in the context of linear regression models.  The extreme values are those 

that could be estimated via maximum likelihood estimation when all possible linear 

combinations of the explanatory variables are considered under all possible model 

specifications.  This method is rather draconian in the sense that all possible 

specifications are considered and that very few hypotheses survive a full EBA analysis 

(Mayer, 2007).  Lack of survivability is seen in ranges of posterior estimates for model 

parameters that cover zero.  Such variables are called fragile even though associated 

parameter estimates obtained via classical estimation might be seen to be statistically 

significant.  Fowles and Loeb (1989, 1995), and Fowles et al. (forthcoming) have 

repeatedly used EBA analysis in models analyzing aggregate U.S. cross section and time 

series models of traffic fatality rates.
20

  

                                                 
20

 Calculations of EBA were computed in Gauss using MICRO-EBA (Fowles, 1988).  The Gauss code is 

available free on request.  
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 A major advantage in using EBA is that prior distributions only have to be 

specified for certain sets of variables, yet bounds can be computed for all variables in the 

model.  Following Leamer (1982) we specify a natural conjugate prior for a set of p 

doubtful variables, or those variables which could plausibly be dropped from a 

specification.
21

 In this paper, those are the regional binary variables, the remaining 

variables, called free variables, are not linked to a proper prior specification.  Free 

variables are associated with a diffuse prior.  For the normal linear regression model 

 

Y ~ N(Xβ,σ2
 I) 

 

the prior mean on the p doubtful variables is also normal, centered at zero, with variance 

matrix H*
-1

. This is written as 

 

Rβ ~ N(0, H*
-1

) 

 

where R is a pxK matrix of constants, β is a kx1 vector of parameters, 0 is a px1 zero 

vector, and H* is a pxp positive definite symmetric precision matrix (the inverse of the 

variance/covariance matrix).  EBA obtains posterior information of dimension K based 

on specification of dimension p (p < K).  In particular, the extreme values of linear 

functions of the posterior mean, b**, for the full Kx1 vector τ,22
 

 

τ’b**  =  τ’(H + R’H*R)
-1

Hb 

 

are given by 

 

a + τ *'f  ±  (τ *'A
-1

 τ *c)
.5 

 

when H*
-1

 is constrained to fall between positive definite matrices VL and VH and 

 

                                                 
21

 Dropping a variable forces a very strong prior belief that the coefficient is exactly equal to zero with 

perfect precision.  
22

 In this paper, τ is a vector with one 1 and k-1 zeros that corresponds with the i
th

 parameter of interest.    
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a = τ 'b - τ 'H-1
R'(RH

-1
R')

-1
Rb, 

 

τ *' = τ 'H-1
R'(RH

-1
R')

-1
, 

 

f = (h + VL
-1

)
-1

(hRb + (VL
-1

 – VH
-1

) * (h + VH
-1

)
-1

hRb/2), 

 

A = (h + VH
-1

)(VL
-1

 – VH
-1

)
-1

(h + VH
-1

) + (h + VH
-1

), 

 

c = (Rb)'h(h + VH
-1

)
-1

(VL
-1

 – VH
-1

)(h + VL
-1

)
-1

hRb/4, 

 

h = (RH
-1

R')
-1

, 

 

b = (X'X)
-1

X'Y, 

 

H = s
-2

X'X, 

 

s = ((Y-Xb)'(Y-Xb)/(n-K))
.5

. 

 

 Table 3 reports the maximum and minimum bounds for the posterior means for 

the non-doubtful variables with the widest possible bounds corresponding with  

VL = 0H*
-1

 and VH = ∞H*
-1

.   Column 1 reports the Maximum Likelihood Estimates for 

the entire model.  Columns 2 and 3 report the EBA minimum and maximum values for 

the posterior mean when the regional variables are specified as doubtful variables.   The 

last two columns show the EBA minimum and maximum values that lie within a 95% 

confidence ellipsoid with all variables specified as doubtful.  Bounds within the 95% 

ellipsoid are referred to as being data favored.   This specification (zero prior mean) 

corresponds with the prior specifications used for BMA and SSVS specifications that 

follow in the next two sections.  Using EBA, priors are minimally specified since H*, the 

prior precision matrix, is only required to be positive definite symmetric.
23

 Results are 

                                                 
23

 In MICRO-EBA, H* was set equal to the identity matrix, so the priors are spherically symmetric, 

centered at zero.  
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only sensitive to the free-doubtful mix via the R matrix which reduces the dimensionality 

for the prior space from K to p.   

 

Table 3 

Maximum Likelihood & Extreme Bounds Analysis for the Fatality Model Specification 

   

Variable Name 

Maximum 

Likelihood 

Estimate 

EBA 

Minimum 

Regional 

Doubtful 

EBA 

Maximum 

Regional 

Doubtful 

EBA 

Minimum 

95% 

Likelihood 

All 

Doubtful 

EBA 

Maximum 

95% 

Likelihood 

All  

Doubtful 

YEAR -0.519 -0.5707 -0.3998 -0.7317 -0.2973 

PERSELAW -0.0324 -0.0467 -0.0274 -0.0758 0.01149 

INSPECT 0.0086 -0.0116 0.0318 -0.0256 0.0427 

SPEED 0.0358 0.0124 0.0678 -0.0334 0.1045 

BELT 0.0064 -0.0086 0.0246 -0.0414 0.0541 

BEER 0.0886 0.0408 0.1271 -0.0138 0.1897 

MLDA 0.015 -0.0005 0.0209 -0.042 0.0719 

YOUNG 0.0498 0.0288 0.1376 -0.0753 0.1743 

CELLPOP 0.2255 0.1785 0.2443 0.0788 0.3687 

POVERTY 0.1851 0.1556 0.2561 0.0518 0.3157 

UNEMPLOY -0.0628 -0.1329 -0.005 -0.2083 0.0836 

REALINC 0.1704 0.0267 0.2761 -0.0722 0.4106 

ED_HS -0.0154 -0.1266 0.075 -0.1949 0.1641 

ED_COLLEGE -0.2837 -0.3698 -0.1685 -0.4759 -0.0872 

CRIME -0.0069 -0.0436 0.1183 -0.1524 0.1386 

SUICIDE 0.1228 0.0764 0.352 -0.0577 0.3016 

 

 

 When the regional variables are considered doubtful, non-fragile inferences are 

obtained for all the explanatory variables except five: inspection (INSPECT), seat belts 

(BELT), minimum legal drinking age (MLDA), high school education (ED_HS), and 

crime (CRIME).  When all variables are doubtful, EBA bounds necessarily cover zero. 

However, the data favored extreme bounds are non-fragile for four variables: year 
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(YEAR), cell phone subscriptions (CELLPOP), poverty (POVERTY), and college 

education (ED_COLLEGE).   

Although EBA as discussed in this paper provides insight into the range of values 

that the posterior means can take, it does not pay direct attention to the posterior 

probabilities of the corresponding models.  The next two procedures address this issue.  

 

III. C. Bayesian Model Averaging 

 

Bayesian Model Averaging was addressed extensively by Raftery, Madigan, and 

Hoetling (1993) following a suggestion by Leamer (1978).  By averaging across many 

model specifications, especially among those with high posterior probability, BMA is 

able to explicitly account for model uncertainty as it relates to parameter estimation.  As 

presented in Hoetling, Madigan, Raftery, and Volinsky (1999), BMA provides a 

straightforward method to summarize the effects of explanatory variables as measured by 

their regression coefficients as they are manifest in assorted models.  In what follows, one 

should keep in mind that two primary sources of uncertainty are addressed: of models and 

of parameters. 

Let ∆ represent a measure of interest, for example, the effect of speed laws on 

motor vehicle fatality rates.  The posterior distribution of ∆, conditional on data D, is a 

weighted average of posterior distributions over models: 

 

 P(∆ | D) = ∑N P(∆ | MN, D) P(MN | D) 

 

where M1, M2, … , MN are the N models under consideration.  In order to calculate this, 

the posterior distribution of model MN is required and is given by Bayes’ theorem as 

 

 P(MN | D) = P(D | MN)P(MN)/∑NP(D | MN)P(MN).  

 

In the numerator, P(D|MN) represents the integrated likelihood of model MN and is 

calculated as 
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 P(D | MN) = ∫P(D | θN, MN)P(θN | MN)dθN 

 

where θN is the vector of parameters of model MN.  For linear regressions in this paper, θ 

is the vector comprised of the β’s and σ2
.   The posterior mean and variance for ∆ are 

calculated based on Raftery (1995) as: 

 

 E(∆ | D) = ∑N dN P(MN | D) and 

 

 V(∆ | D) = ∑N (Var[∆ | D, MN] + dN
2
)P(MN | D) – E(∆ | D)

2
 

 

for dN = E(∆ | D, MN), the estimated, or fitted, effect under model MN.   

 

 Note that the effects of ∆ are measured by averaging over many models with 

weights that correspond to the models’ posterior probabilities.  Posterior variance is 

comprised of sampling and model variation.  In this paper, the formidable task of 

calculating the integrated likelihood function is mitigated by utilizing the fact that this 

likelihood function is well-approximated by the Bayesian Information Criterion (BIC).
24

  

Non-informative priors (uniform over models, MN) and diffuse over parameters within 

models (θN) were utilized.  

 The following table summarizes BMA analysis for the same model presented 

above (in Table 3), regressing fatality rates on the core set of explanatory variables. 

Regional binary variables were included in the analysis but are not reported in Table 4. 

The column headed “p!=0” gives the posterior probability that the particular variable is 

included in the model.  The “EV” column shows the posterior mean for the variable for 

the BMA runs and “SD” is the posterior standard deviation for the variable.   The best 

performing model included 16 explanatory variables with a posterior probability of .279.  

In that model, INSPECT, BELT, UNEMPLOY, ED_HS, MLDA, and CRIME were not 

                                                 
24

 For this paper, BMA results are computed in R using the BMA package with bicreg.  BMA procedures 

were based on finding alternatives to stepwise methods based on p-value style searches.  BMA calculations 

can be performed using monte carlo (MC) integration to compute the integrated likelihood function.  The 

leaps method of selection is a fast alternative (George M. Furnival and Robert W. Wilson, 1974).  The 

relationship between the integrated likelihood function and the BIC score is developed in Raftery (1995).  

MC methods are utilized in SSVS calculations in this paper.  
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present.  BMA never chooses to include BELT or CRIME, and always includes YEAR, 

PERSELAW, BEER, YOUNG, CELLPOP, POVERTY, REALINC, ED_COL, and 

SUICIDE.   Of these nine variables, all are non-fragile under EBA when the regional 

dummy variables are considered doubtful.  SPEED is the tenth explanatory variable that 

was non-fragile under EBA.  BMA selects this variable two-thirds of the time.   As such, 

there is a considerable agreement between EBA and BMA model choice.  

 

Table 4 

Bayesian Model Averages for the Fatality Rate Model Specification 

 

Variable p!=0 EV SD 

YEAR 100 -.445 0.0262 

PERSELAW 100 -.0350 0.00677 

INSPECT 1.5  .0000735 0.00081 

SPEED 66.6 .0203 0.0168 

BELT 0 0.00 0 

BEER 100 .0934 0.0157 

MLDA 1.4 .000138 0.00157 

YOUNG 100 .0784 0.0197 

CELLPOP 100 .179 0.02096 

POVERTY 100 .184 0.0205 

UNEMPLOY 36.8 -.0198 0.0291 

REALINC 100 .161 0.0339 

ED_HS 2.2 -.000827 0.00676 

ED_COL 100 -.0282 0.0247 

CRIME 0 0 0 

SUICIDE 100 .115 0.025 
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III. D.   Stochastic Search Variable Selection 

 

 Stochastic Search Variable Selection was introduced by George and McCulloch 

(1993).  Because it is computationally burdensome, it is one of the more recent 

procedures in Bayesian analysis that takes advantage of the ability to integrate over 

multidimensional spaces using Markov Chain Monte Carlo (MCMC) methods typically 

found when dealing with analyses of the posterior density.  This is done with a Gibbs 

sampler. 

All K of the explanatory variables are included at each iteration of the Markov 

chain to take advantage of the application of the Gibbs sampler to a hierarchical Bayesian 

model. The variable selection choice is imposed by means of a latent variable, γ. Each 

model is represented by a binary vector γ = (γ1, γ2, …, γK) with γi = 1 if the explanatory 

variable is to be effectively included in the model and γi = 0 if the variable is to be 

effectively excluded from the model.  The prior distributions on the slope parameters 

(β’s) for the explanatory variables are distributed normally with mean zero and variance 

ci
2
τi

2
 when γi = 1, N(0, ci

2
τi

2
), and normally with mean zero and variance τi

2
, N(0, τi

2
) 

when γi = 0 with c greater than 1.  

 

 βi|γi ~ (1-γi) N(0, τi
2
)  + γi N(0, ci

2
τi

2
) 

 

The effective exclusion of variable i is imposed by forcing βi to be close to zero. 

This framework results in sets of posterior distributions for all vectors γ of dimension K 

and pays attention to the relatively sharp prior distribution around zero when a variable is 

not effectively included in a model compared with a more diffuse prior when a variable is 

effectively included.
25

 

Each variable is examined in random order at the end of each iteration of the 

Gibbs sampler to evaluate the marginal effect of effectively including/excluding that 

variable in the model.  Based on this a probability of including the variable is computed 

and the value of γi for the next iteration is computed stochastically based on this 

                                                 
25

 ci and τi are choice variables.  In this paper the reported results are for ci = 10 and τi=(2 log(c) (c
2
/(1- 

c
2
))

.-5σ βi  where the parameter σ βi is the OLS coefficient standard deviation.  This choice is consistent with 

George and McCulloch (1993) and follows their notation. 
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probability.  Initial values of the γi are all set at 1 and the initial probabilities of inclusion 

are set at 0.5. Then a stochastic iteration scheme is implemented using Gibbs sampling to 

search for the models with the highest posterior densities.
26

  In particular, the Gibbs 

sampler begins with initialized parameters γ(0)
, β(0)

, σ
2(0)

 and generates the sequence  γ(1)
, 

β(1)
, σ

2(1)
, γ(2)

, β(2)
, σ

2(2)
,  ….   This sequence converges to a posterior distribution which 

supplies the complete posterior P(β, σ
2
, γ | Y).  Concurrent with the iterative values of the 

vector γ are iterative values of the vector p, the probability of variable inclusion, enabling 

us to compute an expected value of the vector β at each iteration.  

 Table 5 summarizes the findings for SSVS for the linear fatality model based on 

10,000 iterations.
27

  The first column (Mean Beta) gives the weighted average for the 

sequence of slope coefficients, weighted by the probability of inclusion.  The second 

column (Standard Deviation) is the mean value of the weighted standard deviations of the 

sequence of slope coefficients.  The third column (Probability Inclusion) is the mean 

value of the probability of a variable’s inclusion in the model.  Column 3 of Table 5 can 

easily be compared with the column labeled “p!=0” in Table 4. It should be noted that the 

regional dummies were treated like any other variable.  They were not singled out a priori 

as being doubtful; nonetheless SSVS categorized them for exclusion.
28

    The five 

variables with the highest values for inclusion (probability of inclusion > .95) in the 

model correspond with the four EBA non-fragile variables (YEAR, POVERTY, 

CELLPOP, and ED_COLLEGE) as presented in Table 3.  SSVS chooses BEER almost 

always, and is non-fragile under EBA when the prior specification includes BEER as a 

non-doubtful variable and the regional variables as doubtful.   

 

 

 

 

 

 

                                                 
26

 In this paper, SSVS was implemented via Markov chain Monte Carlo methods using R.  This code is 

available on request. 
27

 The first 500 iterations were deleted as a break-in period so there were a total of 9500 iterations 

employed in the results reported 
28

 The average value of p for this set was .12.  
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Table 5 

Stochastic Search Variable Selection for the Fatality Rate Model Specification 

 

Variable Mean Beta 

Standard 

Deviation 

Probability 

Inclusion 

YEAR -0.4604 0.0258 1 

PERSELAW -0.0076 0.0134 0.2485 

INSPECT 0.0012 0.0029 0.3696 

SPEED 0.0102 0.0149 0.3386 

BELT -0.0001 0.0032 0.4208 

BEER 0.1069 0.0123 0.9999 

MLDA 0.0034 0.0056 0.4081 

YOUNG 0.0163 0.0278 0.2685 

CELLPOP 0.2146 0.0186 1 

POVERTY 0.1463 0.0174 0.9999 

UNEMPLOY -0.0177 0.0265 0.3313 

REALINC 0.0498 0.0643 0.3891 

ED_HS -0.0185 0.0269 0.3732 

ED_COLLEGE -0.2642 0.0299 0.9999 

CRIME 0.0002 0.0108 0.4642 

SUICIDE 0.0244 0.0441 0.2436 
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III. E. Comparing OLS, EBA, BMA, and SSVS Estimation 

 

 The four procedures discussed above shed insight on the relative importance of a 

variable’s contribution in explaining fatality rates.  Not surprisingly, there are agreements 

between OLS, EBA, BMA, and SSVS findings.   This section highlights the results which 

are summarized graphically in Figure 1.
29

  

 

Figure 1 

Posterior Means for the Fatality Rate Model 

EBA Extreme Bounds, BMA and SSVS Average Values 

Regional Variables Doubtful 
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 Figure 2 in Appendix 2 highlights the findings when all variables are doubtful and presents data favored 

EBA bounds.  
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Figure 1 compares EBA, BMA, and SSVS results in a graphical way.  The solid 

lines (like whiskers in a box and whisker plot) plot the high and low values for the 

posterior mean for each explanatory variable as computed by EBA.  If these lines do not 

cross zero, these variables are considered non-fragile. The BMA slope coefficient 

averages are plotted as triangles, “∆,” and the SSVS averages are plotted as squares, “□.”  

Box width reveals the difference between the BMA and SSVS means.  For example, 

there is almost no disparity between the BMA and SSVS means for variables such as 

inspection (INSPECT) or minimum legal drinking age (MLDA) and some differences for 

real income (REALINC), and the suicide rate (SUICIDE).  There is sign agreement 

between BMA and SSVS for all variables in the model.   

Because the data are standardized we can assess the relative importance of each 

explanatory variable.  The foremost variable is YEAR; clearly there has been a 

downward trend in motor vehicle fatality rates over time.  College education is the 

second most important variable followed by cell phone per capita and the poverty rate.  It 

is interesting to note that the OLS results provide the same results. 

Table 6 below compares the results of the three Bayesian procedures and OLS.  

With respect to the OLS column, we indicate the estimated coefficient with an asterisk 

(*) indicating significance with a t-statistic of 2.00 or more (in absolute value).  The EBA 

column reflects the sign of the coefficients associated with columns 2 and 3 of Table 3 

where the regional variables are doubtful and when the coefficients are non-fragile, i.e. 

robust.  In addition it indicates if the variable coefficient is fragile.  The BMA column 

indicates the posterior mean for the variable followed by a “1” if the variable is always 

selected by BMA and “.666” if it is selected two-thirds of the time.  Hence, this column 

reflects the basic results of Table 4.  The SSVS column reflects the basic results of Table 

5, indicating the “Mean Beta” for the five variables with the highest probability for 

inclusion (with probability of .95 or greater).  This allows for the comparison of results 

similar to Figure 1 and can be viewed together.  However, in what follows, we make use 

of the criterion established above in Table 6 and then supported by Figure 1.  That is, we 

consider a variable more certain to impact the fatality rate based on a combination of 

non-fragile EBA results and inclusion of the variable by BMA and/or SSVS as well as 

classical significance.  
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The variables which appear not to have an effect by any of the estimation 

techniques include: INSPECT, BELT, MLDA, ED_HS, and CRIME.  From the Bayesian 

perspective, the results are fragile using EBA and not included via the BMA criterion or 

by SSVS.  Figure 1 shows the Bayesian results centering consistently on the zero line. 

The OLS results dovetail with these results, given that they provide statistically 

insignificant results.  These findings are consistent with other studies.  For example, 

Keeler (1994) has found the effect of seatbelt laws has diminished over time.  Other 

studies dealing with seatbelt laws have generally suggested that seat belt laws provide net 

benefits, but the results have been mixed.  For example, Loeb (1995) found that seatbelt 

laws were effective in reducing fatality and injury rates in Texas.  However, when 

examining seatbelt laws in Maryland, Loeb (2001) found the results varied in 

significance depending on single vehicle versus multiple vehicle accidents.   

What might be called a weak effect is noted with: PERSELAW, SPEED, and 

UNEMPLOY.  None of these were selected by SSVS.  However, they were found non-

fragile by EBA and selected by BMA except for UNEMPLOY.  The results once again 

dovetail with the OLS results.  In addition, most of these results are consistent with the 

literature.  PERSELAW was found to be significant and non-fragile by Fowles et al. 

(forthcoming) as well as by Loeb et al. (forthcoming).  However, the later study found the 

significance of the coefficient associated with BACLAW using time-series data was 

dependent on model specification.  SPEED, like others in this group, does not have a 

large associated coefficient, but is consistent with a good deal of the literature which 

argues that higher speed limits are associated with motor vehicle accidents. Some counter 

arguments are to be found in the literature as well as discussed by Loeb et al. (1994).
30

 

Both YOUNG, REALINC, and SUICIDE have relatively strong results with all 

methods of estimation but are somewhat attenuated by SSVS based on the criterion used 

in Table 6 and supported by Figure 1.  Clearly the percentage of males aged between 16-

24 have an increasing effect on motor vehicle fatality rates.  Part of this may be attributed 

to inexperience in decision making, including decisions pertaining to driving situations, 

along with potentially higher risk taking associated with youth.  SUICIDE has been 

                                                 
30

 Lave (1985), Fowles and Loeb (1989), and Levy and Asch (1989), among others, have examined the 

effect of speed versus speed variance as well.  Data on average speed and the 85% speed are no longer 

collected by USDOT and as such speed and speed variance could not be investigated in the current study. 
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included as a “companion variable” to measure the potential effect of excluded variables 

not addressed by the time trend (YEAR).  However, it has a strong positive influence on 

motor vehicle fatality rates.  One speculates that SUICIDE may proxy a measure of self 

worth in society.  As such, if self worth diminishes, suicides may increase as well as 

behavior associated with additional risk taking. 

The most consistently strong results across all methods of estimation (based again 

on the criteria in Table 6 and nested in Figure 1) pertain to the variables: YEAR, BEER, 

CELLPOP, POVERTY, and ED_COLLEGE.  All these variables have signs consistent 

with a priori expectations.  YEAR may proxy technological changes over time and 

permanent income
31

.  We expect safety to increase with technology and hence lower 

fatality rates, assuming that drivers don’t compensate by taking on additional risks.  In 

addition, to the extent that YEAR serves as a proxy for permanent income, one would 

expect fatality rates to diminish with increases in such income should it be a measure of 

long-run income.
32

   The effect of alcohol has been long studied and has been found to 

have an increasing effect on fatality rates.  This has led to policy recommendations of 

increasing the minimum legal drinking age as well as tax policies so as to reduce demand 

for alcohol, especially among youths.
33

  Poverty is expected to potentially have an 

increasing effect on fatality rates, given that individuals with low incomes have lower 

opportunity costs associated with risky driving.  Similarly, college education is an 

investment in human capital and as such would enhance the value of life.  This may then 

result in life-protecting behavior, given the higher potential opportunity costs associated 

with risky driving (and other risky activities).  Finally, the strong results associated with 

CELLPOP are consistent with the findings of Fowles et al. (forthcoming) and Loeb et al. 

(forthcoming) as opposed to Chapman and Shofield (1998), Poysti et al. (2005), and to 

some extent by Laberge-Nadeau et al. (2003).  Clearly, cell phones have a net life-taking 

effect when considering motor vehicle fatality rates.   

  

 

 

                                                 
31

 As suggested by Peltzman (1975). 
32

 See Loeb et al. (1994) for a discussion. 
33

 See Loeb et al. (1994). 
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Table 6 

Comparison of OLS, EBA, BMA, and SSVS Results 

   

Variable Name 

OLS 

Estimate 

EBA  

Result 

Regional 

Doubtful 

BMA 

/P(Inclusion) 

SSVS 

/P(Inclusion) 

YEAR -.466* - -.445/1 -.4604/1 

PERSELAW -.0331* - -.035/1  

INSPECT .00775 Fragile   

SPEED .0333* + .0203/.66  

BELT .000318 Fragile   

BEER .0935* + .0934/1 0.1069/.9999 

MLDA .0104 Fragile   

YOUNG .0619* + .0785/1  

CELLPOP .196* + .179/1 0.2146/1 

POVERTY .175 + .184/1 0.1463/.9999 

UNEMPLOY -.0561* -   

REALINC .154* + .161/1  

ED_HS -.0361 Fragile   

ED_COLLEGE -.269* - -.282/1 -.2642/.9999 

CRIME -.000037 Fragile   

SUICIDE .127* + .115/1  
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IV.   Concluding Comments 

 

 This study evaluated the effect of various driving related and socioeconomic 

factors on motor vehicle fatality rates using four estimation techniques.  Three Bayesian 

results were compared with a simple classical OLS model which may be considered as a 

bench-mark.  Of particular interest is the effect of cell phones on motor vehicle fatalities.  

Cell phones were found to increase fatality rates regardless of the estimation technique 

used.  All the Bayesian methods as well as the classical regression method suggest this 

outcome when making use of a large and fertile panel data set covering the period 1980 

to 2005.  This suggests that efforts to diminish the use of cell phones by drivers are 

warranted.  It supports the decision by those states which have outlawed the use of hand-

held cell phones by drivers (in five states and the District of Columbia) and suggests that 

other states may want to consider such legislation as well. These results are consistent 

with those of Fowles et al. (forthcoming) and Loeb et al. (forthcoming) using different 

modeling approaches and data sets.  Banning the use of cell phones by drivers might be 

accomplished through fines and penalties.  Given that experiments have concluded that 

both hand-held and hands-free cell phones are risky, additional studies might be 

considered to determine if legislation banning hands-free devices might be warranted.   

 Alcohol continues to be a major contributing factor in automobile accidents.  This 

fact is supported by the current study.  States may reduce the effect of alcohol by 

education, fines and effective penalties for driving while under the influence of alcohol, 

and taxes on alcohol.
34

   

 It should be noted that the above potential policy recommendations would require 

active enforcement as well.  In addition, suicides have been found to track automobile 

fatalities.  We have used suicides as a companion variable to account for excluded factors 

which have not been picked up by the time trend.
35

  However, from a policy perspective, 

investment in public health/mental health facilities may be warranted to reduce fatalities.  

This would be food for thought for future research. 

  

                                                 
34

 See Chaloupka et al. (1993) on the effect of alcohol control policies. 
35

 See Loeb (1995, 2001) for a discussion of companion variables. 
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Appendix 1: Data Sources 

Name Data Source 

FATAL Highway Statistics (various years), Federal Highway Administration, 

Traffic Safety Facts (various years), National Highway Traffic Safety 

Administration 

PERSELAW Digest of State Alcohol-Highway Safety Related Legislation (various 

years), Traffic Laws Annotated 1979, Alcohol and Highway Safety 

Laws: A National Overview 1980, National Highway Traffic Safety 

Administration 

 

INSPECT Highway Statistics (various years), Federal Highway Administration 

 

SPEED Highway Statistics (various years), Federal Highway Administration 

 

BELT Traffic Safety Facts (various years), National Highway and Traffic 

Safety Administration 

 

BEER U.S. Census Bureau, National Institute on Alcohol Abuse and 

Alcoholism 

 

MLDA A Digest of State Alcohol-Highway Safety Related Legislation (various 

years), Traffic Laws Annotated 1979, Alcohol and Highway Safety 

Laws: A National Overview of 1980, National Highway Traffic Safety 

Administration, U.S. Census Bureau 

 

YOUNG State Population Estimates (various years), U.S. Census Bureau 

http://www.census.gov/population/www/estimates/statepop.html 

 

CELLPOP Cellular Telecommunication and Internet Association Wireless Industry 

Survey, International Association for the Wireless Telecommunications 

Industry. 
 

POVERTY Statistical Abstract of the United States (various years), U.S. Census 

Bureau website http://www.census.gov/hhes/poverty/histpov19.html 

 

UNEMPLOY Statistical Abstract of the United States (various years), U.S. Census 

Bureau 

 

REALINC State Personal Income (various years), Bureau of Economic Analysis 

website http://www.bea.doc.gov/bea/regional/spi/dpcpi.htm 

 

ED_HS Digest of Education Statistics (various years), National Center for 

Education Statistics, Educational Attainment in the United States  

(various years), U.S. Census Bureau 

 

  



 32 

ED_COL Digest of Education Statistics (various years), National Center for 

Education Statistics, Educational Attainment in the United States 

(various years), U.S. Census Bureau 

 

CRIME Statistical Abstract of the United States (various years), U.S. Census 

Bureau 

 

SUICIDE Statistical Abstract of the United States (various years), U.S. Census 

Bureau 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 33 

 

Appendix 2: Alternative Presentation of Bayesian Models 

 

Figure 2 

Posterior Means for the Fatality Rate Model 

EBA Extreme Bounds, BMA and SSVS Average Values 
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